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Recall: Scheduling Policy Goals/Criteria

Minimise
 Latency 

Maximise 
Throughput

While remaining fair and starvation-free
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Recall: Useful metrics
Waiting time for P 

Total Time spent waiting for CPU
Average waiting time

Average of all processes’ wait time 

Response Time for P
Time to when process gets first scheduled

Completion time
Waiting time + Run time 

Average completion time
Average of all processes' completion time
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Recall: Important Performance Metrics

Fairness 
Equality in the performance perceived by one task

Starvation
The lack of progress for one task, due to resources 

being allocated to different tasks
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Recall: Assumptions

Unrealistic but simplify the problem 
so it can be solved

Threads are independent! One thread = One User

Only look at work-conserving scheduler
=> Never leave processor idle if work to do
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Recall: FCFS/FIFO Summary

The good

Simple
Low Overhead
No Starvation*

The bad

 Sensitive to arrival 
order (poor 
predictability)

The ugly

 Convoy Effect. 
 Bad for Interactive 

Tasks
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Recall: SJF Summary

The good

Optimal Average 
Completion Time when 

jobs arrive 
simultaneously

The bad

Still subject to convoy 
effect

The ugly

 Can lead to starvation!

Requires knowing duration of job 
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Recall: STCF Summary

The good

Optimal Average 
Completion Time Always

The bad

 

The ugly

 Can lead to starvation!

Requires knowing duration of job 
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Recall: Taking a step back

Property FCFS SJF STCF
Optimise 
Average 
Completion 

Time
Prevent 
Starvation
Prevent
Convoy 
Effect

Psychic Skills 
Not Needed
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Goals for Today

• Round-robin scheduling (continued) 

• What is MLFQ and how is it used today? 

• What does Linux do?
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Round-Robin Scheduling

RR runs a job for a time slice 
(a scheduling quantum)

Once time slice over, 
Switch to next job in ready queue.

=> Called time-slicing



11.14Crooks CS162 © UCB Fall 2023

• T1: Burst Length 10    T3: Burst Length 10
• T2: Burst Length 5

Q = 10

Average Completion Time = (10 + 15 + 25)/3 = 16.7

Q = 5

Average Completion Time = (20 + 10 + 25)/3 = 18.3

Decrease Completion Time

T1
0 10

T2
15

T1
0 15

T2 T1
5 20

T3
25

10

T3 T3
25
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Small scheduling quantas lead to 
frequent context switches
- Mode switch overhead
- Trash cache-state

q must be large with respect to context switch, 
otherwise overhead is too high

Switching is not free!
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Are we done?

Can RR lead to starvation?

No

No process waits more than (n-1)q time units
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Are we done?

Can RR suffer from convoy effect?

No

Only run a time-slice at a time
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RR Summary

The good

Bounded response time

The bad

Completion time can 
be high (stretches out 

long jobs)

The ugly

 Overhead of context switching
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Taking a step back

Property FCFS SJF STCF RR
Optimise 
Average 
Completion 

Time
Optimise 
Average 
Response 
Time 
Prevent 
Starvation
Prevent
Convoy 
Effect
Psychic 
Skills Not 
Needed
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FCFS and Round Robin Showdown

Assuming zero-cost context-switching time, 
is RR always better than FCFS?
10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999

10 1000 1000

Job # FIFO
1 100
2 200
… …
9 900

10 1000
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Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153
Best FCFS:

Quantum P1 P2 P3 P4 Average
Best FCFS 85 8 16 32 69.5
Q=1 137 30 153 81 100.5
Q=5 135 28 153 82 99.5
Q=8 133 16 153 80 99,5
Q=10 135 18 153 92 104.5
Q=20 125 28 153 112 104.5
Worst 
FCFS

121 153 68 145 121.75
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RR Summary

The good

Bounded wait time

The bad

Completion time can 
be high (stretches out 

long jobs)

The ugly

 Overhead of context switching
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Recall: Workload Assumptions

A workload is a set of tasks for some 
system to perform, including how long tasks 

last and when they arrive

Compute-Bound

Tasks that primarily 
perform compute

Fully utilise CPU

IO Bound

Mostly wait for IO, 
limited compute

Often in the 
Blocked state
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RR performs poorly when running mix of 
IO and Compute tasks

IO tasks need to run “immediately” for a short 
duration of time (low waiting time). 

RR & IO

P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 
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RR & IO
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. Time Quanta: 
50 ms

P1
1

P2 P1 P2
51 52 102

Current 
Schedule

P1 P2 P1

Optimal 
Schedule

P1 P2 P1P2 P1P2 P1P2
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What we want

1) Minimise average waiting time for IO/interactive tasks
(tasks with short CPU bursts)

2) Miminise average completion time 

3) Maximise throughput 
(includes minimizing context switches)

4) Remain fair/starvation-free
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A side note: priorities

Some jobs are more important than others

Should be scheduled first.
 Should get a larger share of the CPU 

Assign each job with a priority
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A side note: priorities
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Split jobs by priority into n different queues. 

Always process highest-priority queue if not empty. Process 
each queue round-robin.

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Strict Priority Scheduling

Does this lead to starvation?
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Priority Inversion

A high–priority thread can become starved by waiting 
on a low priority thread to release a resource that the 

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()
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Priority Inversion

A high–priority thread can become starved by waiting 
on a low priority thread to release a resource that the 

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()

Acquire()
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Priority Inversion

A high–priority thread can become starved by waiting 
on a low priority thread to release a resource that the 

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()

BLOCKED ON LOCK

Schedule Job 2 instead. 
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Priority Inversion

A high–priority thread can become starved by waiting 
on a low priority thread to release a resource that the 

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()

BLOCKED ON LOCK

Keeps scheduling Job 2 over Job 1, Job 3 never runs!
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Priority Inversion

Where high priority task is blocked waiting 
on low priority task

Low priority one must run for high priority to make 
progress

Medium priority task can starve a high priority one
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One Solution: Priority Donation/Inheritance

Job 3 temporarily grants Job 1 its “high priority” to 
run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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One Solution: Priority Donation/Inheritance

Job 3 temporarily grants Job 1 its “high priority” to 
run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()
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July 4, 1997 – Pathfinder lands on Mars
–First US Mars landing since Vikings in 
1976; first rover

And then…a few days into mission…:
– System would reboot randomly, losing 
valuable time and progress

Problem? Priority Inversion!
–Low priority task grabs mutex trying to 
communicate with high priority task:
–Realtime watchdog detected lack of 
forward progress and invoked reset to 
safe state

Case Study: Martian Pathfinder Rover
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Recall: What we want

1) Minimise average waiting time for IO/interactive tasks
(tasks with short CPU bursts)

2) Miminise average completion time 

3) Maximise throughput 
(includes minimizing context switches)

4) Remain fair/starvation-free
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Recall: STCF

Schedule jobs in order of shortest completion time

Requires knowledge of 
job completion time 

Subject to 
Starvation

Approximate duration 
of CPU burst; encode 

it in priorities
Dynamically 

adapt 
priorities
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Introducing the Multi-level Feedback Queue

Create distinct queues for ready jobs, each
assigned a different priority level. 

All jobs belong to one queue at a time. Jobs can 
move between queues.

MLFQ uses priorities to decide from which queue it 
should pick next job. 

Individual queues run RR with increasing time quantas
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MLFQ (V 1.0)
Rule 1

If Priority(A) > Priority(B) (different queues)
 A runs (B doesn’t).

Rule 2
If Priority(A) = Priority(B), A & B run in RR.

Key question:
How do you set the priorities? 

Vary the priority of a job based on its observed behaviour
Use the history of the job to predict its future behaviour
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Learning behaviour

Rule 3
When a job enters the system, it is placed at the 

highest priority (the topmost queue).

Rule 4a
If a job uses up an entire time slice while running, its 
priority is reduced (i.e., it moves down one queue).

Rule 4b
If a job gives up the CPU before the time slice is 

up, it stays at the same priority level.
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Learning behaviour

Where do IO-bound/interactive jobs end up?
a) Top Queue b) Bottom Queue

MLQF emulates STCF: short jobs given higher priorities 
than long jobs. 

First assumes all jobs are short. If jobs finish < time 
quanta, assume IO-bound, otherwise CPU bound



11.44Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule



11.45Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P1
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1

P1
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1

P1 P2
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1 P1

P2
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1 P1 P2P1
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P2

P1 P1 P2
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1 P1 P2
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P2

P1

P1 P1 P2
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P2

P1P1 P1 P2
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P2P1P1 P1 P2
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Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. 

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P2P1P1 P1 P2

P2

P1
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Are we done?

MLQF can be gamed:  
Intentionally insert IO request just before time quanta 

to stay on queue. 
The “Othello” strategy

MLQF is subject to starvation:
Systematically prioritise higher-priority queues
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Are we done?

MLQF can be gamed:  
Intentionally insert IO 

request just before time 
quanta to stay on queue. 
The “Othello” strategy

MLQF is subject to 
starvation:

Systematically prioritise 
higher-priority queues

Rule 5
After some time period S, 
move all jobs in system
to the topmost queue.

Rule 4
Once a job uses up its time 
allotment at a given levels 

(regardless
of how many times gave up 

CPU), reduce priority
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MLFQ
Rule 1

If Priority(A) > Priority(B), A runs (B doesn’t).
Rule 2 

If Priority(A) = Priority(B), A & B run RR using 
quantum of queue.

Rule 3 
A new job is placed in the topmost queue.

Rule 4
Once a job uses up its time allotment at a given 
level (regardless of how many times it has given up 

the CPU), its priority is reduced.
Rule 5 

After some time period S, move all the jobs in the 
system to the topmost queue.
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Many many different variants of MLQF

Change how prevent starvation

Change constants

Change scheduling policies within each queue

Most modern schedulers are variants of MLQF queues
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History of Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards
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Case Study: Linux O(n) Scheduler

At every context switch:
–Scan full list of processes in the ready queue
–Compute relevant priorities
–Select the best process to run

Scalability issues:
–Context switch cost increases as number of processes 
increase
–Single queue even in multicore systems
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Case Study: Linux O(1) Scheduler

Next process to run is chosen in constant time

Priority-based scheduler with 140 different priorities

Real-time/kernel tasks assigned priorities 0 to 99 (0 is 
highest priority)

User tasks (interactive/batch) assigned priorities 100 to 
139 (100 is highest priority)

Kernel/Realtime Tasks User Tasks

0 100 139
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Case Study: O(1) Scheduler – User tasks

Per priority-level, each CPU has two ready queues

An active queue, for processes which have not used up 
their time quanta

An expired queue, for processes who have

Timeslices/priorities/interactivity credits all computed when 
jobs finishes timeslice

Timeslice depends on priority
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User tasks – Priority Adjustment
User-task priority adjusted ±5 based on heuristics

» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg ⇒ more I/O bound the task, more reward (and 
vice versa)

Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for 
temporary changes in behavior

However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been 
starved for too long…
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O(1) Scheduler – Real tasks

Real-Time Tasks always preempt non-RT tasks

No dynamic adjustment of priorities

Scheduling schemes:
»SCHED_FIFO: preempts other tasks, no timeslice limit
»SCHED_RR: preempts normal tasks, RR scheduling 

amongst tasks of same priority



11.67Crooks CS162 © UCB Fall 2023

An aside: Real-Time Scheduling
Goal

Predictability of Performance!

We need to predict with confidence worst case response 
times for systems!

Real-time is about enforcing predictability,
 and does not equal fast computing.
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