
CS162
Operating Systems and
Systems Programming

Lecture 11

Scheduling
Core Concepts and Classic Policies

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

11.2Crooks CS162 © UCB Fall 2023

Recall: Scheduling Policy Goals/Criteria

Minimise
 Latency

Maximise
Throughput

While remaining fair and starvation-free

11.3Crooks CS162 © UCB Fall 2023

Recall: Useful metrics
Waiting time for P

Total Time spent waiting for CPU
Average waiting time

Average of all processes’ wait time

Response Time for P
Time to when process gets first scheduled

Completion time
Waiting time + Run time

Average completion time
Average of all processes' completion time

11.4Crooks CS162 © UCB Fall 2023

Recall: Important Performance Metrics

Fairness
Equality in the performance perceived by one task

Starvation
The lack of progress for one task, due to resources

being allocated to different tasks

11.5Crooks CS162 © UCB Fall 2023

Recall: Assumptions

Unrealistic but simplify the problem
so it can be solved

Threads are independent! One thread = One User

Only look at work-conserving scheduler
=> Never leave processor idle if work to do

11.7Crooks CS162 © UCB Fall 2023

Recall: FCFS/FIFO Summary

The good

Simple
Low Overhead
No Starvation*

The bad

 Sensitive to arrival
order (poor
predictability)

The ugly

 Convoy Effect.
 Bad for Interactive

Tasks

11.8Crooks CS162 © UCB Fall 2023

Recall: SJF Summary

The good

Optimal Average
Completion Time when

jobs arrive
simultaneously

The bad

Still subject to convoy
effect

The ugly

 Can lead to starvation!

Requires knowing duration of job

11.9Crooks CS162 © UCB Fall 2023

Recall: STCF Summary

The good

Optimal Average
Completion Time Always

The bad

The ugly

 Can lead to starvation!

Requires knowing duration of job

11.10Crooks CS162 © UCB Fall 2023

Recall: Taking a step back

Property FCFS SJF STCF
Optimise
Average
Completion

Time
Prevent
Starvation
Prevent
Convoy
Effect

Psychic Skills
Not Needed

11.11Crooks CS162 © UCB Fall 2023

Goals for Today

• Round-robin scheduling (continued)

• What is MLFQ and how is it used today?

• What does Linux do?

11.12Crooks CS162 © UCB Fall 2023

Round-Robin Scheduling

RR runs a job for a time slice
(a scheduling quantum)

Once time slice over,
Switch to next job in ready queue.

=> Called time-slicing

11.14Crooks CS162 © UCB Fall 2023

• T1: Burst Length 10 T3: Burst Length 10
• T2: Burst Length 5

Q = 10

Average Completion Time = (10 + 15 + 25)/3 = 16.7

Q = 5

Average Completion Time = (20 + 10 + 25)/3 = 18.3

Decrease Completion Time

T1
0 10

T2
15

T1
0 15

T2 T1
5 20

T3
25

10

T3 T3
25

11.15Crooks CS162 © UCB Fall 2023

Small scheduling quantas lead to
frequent context switches
- Mode switch overhead
- Trash cache-state

q must be large with respect to context switch,
otherwise overhead is too high

Switching is not free!

11.16Crooks CS162 © UCB Fall 2023

Are we done?

Can RR lead to starvation?

No

No process waits more than (n-1)q time units

11.17Crooks CS162 © UCB Fall 2023

Are we done?

Can RR suffer from convoy effect?

No

Only run a time-slice at a time

11.18Crooks CS162 © UCB Fall 2023

RR Summary

The good

Bounded response time

The bad

Completion time can
be high (stretches out

long jobs)

The ugly

 Overhead of context switching

11.19Crooks CS162 © UCB Fall 2023

Taking a step back

Property FCFS SJF STCF RR
Optimise
Average
Completion

Time
Optimise
Average
Response
Time
Prevent
Starvation
Prevent
Convoy
Effect
Psychic
Skills Not
Needed

11.20Crooks CS162 © UCB Fall 2023

FCFS and Round Robin Showdown

Assuming zero-cost context-switching time,
is RR always better than FCFS?
10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999

10 1000 1000

Job # FIFO
1 100
2 200
… …
9 900

10 1000

11.21Crooks CS162 © UCB Fall 2023

Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153
Best FCFS:

Quantum P1 P2 P3 P4 Average
Best FCFS 85 8 16 32 69.5
Q=1 137 30 153 81 100.5
Q=5 135 28 153 82 99.5
Q=8 133 16 153 80 99,5
Q=10 135 18 153 92 104.5
Q=20 125 28 153 112 104.5
Worst
FCFS

121 153 68 145 121.75

11.22Crooks CS162 © UCB Fall 2023

RR Summary

The good

Bounded wait time

The bad

Completion time can
be high (stretches out

long jobs)

The ugly

 Overhead of context switching

11.23Crooks CS162 © UCB Fall 2023

Recall: Workload Assumptions

A workload is a set of tasks for some
system to perform, including how long tasks

last and when they arrive

Compute-Bound

Tasks that primarily
perform compute

Fully utilise CPU

IO Bound

Mostly wait for IO,
limited compute

Often in the
Blocked state

11.24Crooks CS162 © UCB Fall 2023

RR performs poorly when running mix of
IO and Compute tasks

IO tasks need to run “immediately” for a short
duration of time (low waiting time).

RR & IO

P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

11.25Crooks CS162 © UCB Fall 2023

RR & IO
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms. Time Quanta:
50 ms

P1
1

P2 P1 P2
51 52 102

Current
Schedule

P1 P2 P1

Optimal
Schedule

P1 P2 P1P2 P1P2 P1P2

11.26Crooks CS162 © UCB Fall 2023

What we want

1) Minimise average waiting time for IO/interactive tasks
(tasks with short CPU bursts)

2) Miminise average completion time

3) Maximise throughput
(includes minimizing context switches)

4) Remain fair/starvation-free

11.27Crooks CS162 © UCB Fall 2023

A side note: priorities

Some jobs are more important than others

Should be scheduled first.
 Should get a larger share of the CPU

Assign each job with a priority

11.28Crooks CS162 © UCB Fall 2023

A side note: priorities

11.29Crooks CS162 © UCB Fall 2023

Split jobs by priority into n different queues.

Always process highest-priority queue if not empty. Process
each queue round-robin.

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Strict Priority Scheduling

Does this lead to starvation?

11.30Crooks CS162 © UCB Fall 2023

Priority Inversion

A high–priority thread can become starved by waiting
on a low priority thread to release a resource that the

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()

11.31Crooks CS162 © UCB Fall 2023

Priority Inversion

A high–priority thread can become starved by waiting
on a low priority thread to release a resource that the

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()

Acquire()

11.32Crooks CS162 © UCB Fall 2023

Priority Inversion

A high–priority thread can become starved by waiting
on a low priority thread to release a resource that the

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()

BLOCKED ON LOCK

Schedule Job 2 instead.

11.33Crooks CS162 © UCB Fall 2023

Priority Inversion

A high–priority thread can become starved by waiting
on a low priority thread to release a resource that the

high priority thread needs to make progress

Priority 3
Priority 2
Priority 1 Job 1

Job 3
Job 2

Acquire()

BLOCKED ON LOCK

Keeps scheduling Job 2 over Job 1, Job 3 never runs!

11.34Crooks CS162 © UCB Fall 2023

Priority Inversion

Where high priority task is blocked waiting
on low priority task

Low priority one must run for high priority to make
progress

Medium priority task can starve a high priority one

11.35Crooks CS162 © UCB Fall 2023

One Solution: Priority Donation/Inheritance

Job 3 temporarily grants Job 1 its “high priority” to
run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

11.36Crooks CS162 © UCB Fall 2023

One Solution: Priority Donation/Inheritance

Job 3 temporarily grants Job 1 its “high priority” to
run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()

11.37Crooks CS162 © UCB Fall 2023

July 4, 1997 – Pathfinder lands on Mars
–First US Mars landing since Vikings in
1976; first rover

And then…a few days into mission…:
– System would reboot randomly, losing
valuable time and progress

Problem? Priority Inversion!
–Low priority task grabs mutex trying to
communicate with high priority task:
–Realtime watchdog detected lack of
forward progress and invoked reset to
safe state

Case Study: Martian Pathfinder Rover

11.38Crooks CS162 © UCB Fall 2023

Recall: What we want

1) Minimise average waiting time for IO/interactive tasks
(tasks with short CPU bursts)

2) Miminise average completion time

3) Maximise throughput
(includes minimizing context switches)

4) Remain fair/starvation-free

11.39Crooks CS162 © UCB Fall 2023

Recall: STCF

Schedule jobs in order of shortest completion time

Requires knowledge of
job completion time

Subject to
Starvation

Approximate duration
of CPU burst; encode

it in priorities
Dynamically

adapt
priorities

11.40Crooks CS162 © UCB Fall 2023

Introducing the Multi-level Feedback Queue

Create distinct queues for ready jobs, each
assigned a different priority level.

All jobs belong to one queue at a time. Jobs can
move between queues.

MLFQ uses priorities to decide from which queue it
should pick next job.

Individual queues run RR with increasing time quantas

11.41Crooks CS162 © UCB Fall 2023

MLFQ (V 1.0)
Rule 1

If Priority(A) > Priority(B) (different queues)
 A runs (B doesn’t).

Rule 2
If Priority(A) = Priority(B), A & B run in RR.

Key question:
How do you set the priorities?

Vary the priority of a job based on its observed behaviour
Use the history of the job to predict its future behaviour

11.42Crooks CS162 © UCB Fall 2023

Learning behaviour

Rule 3
When a job enters the system, it is placed at the

highest priority (the topmost queue).

Rule 4a
If a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue).

Rule 4b
If a job gives up the CPU before the time slice is

up, it stays at the same priority level.

11.43Crooks CS162 © UCB Fall 2023

Learning behaviour

Where do IO-bound/interactive jobs end up?
a) Top Queue b) Bottom Queue

MLQF emulates STCF: short jobs given higher priorities
than long jobs.

First assumes all jobs are short. If jobs finish < time
quanta, assume IO-bound, otherwise CPU bound

11.44Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

11.45Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P1

11.46Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1

11.47Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1

P1

11.48Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1

P1 P2

11.49Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1 P1

P2

11.50Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1 P1 P2P1

11.51Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P2

P1 P1 P2

11.52Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P1 P1 P2

11.53Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P2

P1

P1 P1 P2

11.54Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule

P2

P1P1 P1 P2

11.55Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P2P1P1 P1 P2

11.56Crooks CS162 © UCB Fall 2023

Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P2P1P1 P1 P2

P2

P1

11.57Crooks CS162 © UCB Fall 2023

Are we done?

MLQF can be gamed:
Intentionally insert IO request just before time quanta

to stay on queue.
The “Othello” strategy

MLQF is subject to starvation:
Systematically prioritise higher-priority queues

11.58Crooks CS162 © UCB Fall 2023

Are we done?

MLQF can be gamed:
Intentionally insert IO

request just before time
quanta to stay on queue.
The “Othello” strategy

MLQF is subject to
starvation:

Systematically prioritise
higher-priority queues

Rule 5
After some time period S,
move all jobs in system
to the topmost queue.

Rule 4
Once a job uses up its time
allotment at a given levels

(regardless
of how many times gave up

CPU), reduce priority

11.59Crooks CS162 © UCB Fall 2023

MLFQ
Rule 1

If Priority(A) > Priority(B), A runs (B doesn’t).
Rule 2

If Priority(A) = Priority(B), A & B run RR using
quantum of queue.

Rule 3
A new job is placed in the topmost queue.

Rule 4
Once a job uses up its time allotment at a given
level (regardless of how many times it has given up

the CPU), its priority is reduced.
Rule 5

After some time period S, move all the jobs in the
system to the topmost queue.

11.60Crooks CS162 © UCB Fall 2023

Many many different variants of MLQF

Change how prevent starvation

Change constants

Change scheduling policies within each queue

Most modern schedulers are variants of MLQF queues

11.61Crooks CS162 © UCB Fall 2023

History of Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards

11.62Crooks CS162 © UCB Fall 2023

Case Study: Linux O(n) Scheduler

At every context switch:
–Scan full list of processes in the ready queue
–Compute relevant priorities
–Select the best process to run

Scalability issues:
–Context switch cost increases as number of processes
increase
–Single queue even in multicore systems

11.63Crooks CS162 © UCB Fall 2023

Case Study: Linux O(1) Scheduler

Next process to run is chosen in constant time

Priority-based scheduler with 140 different priorities

Real-time/kernel tasks assigned priorities 0 to 99 (0 is
highest priority)

User tasks (interactive/batch) assigned priorities 100 to
139 (100 is highest priority)

Kernel/Realtime Tasks User Tasks

0 100 139

11.64Crooks CS162 © UCB Fall 2023

Case Study: O(1) Scheduler – User tasks

Per priority-level, each CPU has two ready queues

An active queue, for processes which have not used up
their time quanta

An expired queue, for processes who have

Timeslices/priorities/interactivity credits all computed when
jobs finishes timeslice

Timeslice depends on priority

11.65Crooks CS162 © UCB Fall 2023

User tasks – Priority Adjustment
User-task priority adjusted ±5 based on heuristics

» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg ⇒ more I/O bound the task, more reward (and
vice versa)

Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for
temporary changes in behavior

However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been
starved for too long…

11.66Crooks CS162 © UCB Fall 2023

O(1) Scheduler – Real tasks

Real-Time Tasks always preempt non-RT tasks

No dynamic adjustment of priorities

Scheduling schemes:
»SCHED_FIFO: preempts other tasks, no timeslice limit
»SCHED_RR: preempts normal tasks, RR scheduling

amongst tasks of same priority

11.67Crooks CS162 © UCB Fall 2023

An aside: Real-Time Scheduling
Goal

Predictability of Performance!

We need to predict with confidence worst case response
times for systems!

Real-time is about enforcing predictability,
 and does not equal fast computing.

	CS162�Operating Systems and�Systems Programming�Lecture 11���Scheduling�Core Concepts and Classic Policies�
	Recall: Scheduling Policy Goals/Criteria
	Recall: Useful metrics
	Recall: Important Performance Metrics
	Recall: Assumptions
	Recall: FCFS/FIFO Summary
	Recall: SJF Summary
	Recall: STCF Summary
	Recall: Taking a step back
	Goals for Today
	Round-Robin Scheduling
	Decrease Completion Time
	Switching is not free!
	Are we done?
	Are we done?
	RR Summary
	Taking a step back
	FCFS and Round Robin Showdown
	Earlier Example with Different Time Quantum
	RR Summary
	Recall: Workload Assumptions
	RR & IO
	RR & IO
	What we want
	A side note: priorities
	A side note: priorities
	Strict Priority Scheduling
	Priority Inversion
	Priority Inversion
	Priority Inversion
	Priority Inversion
	Priority Inversion
	One Solution: Priority Donation/Inheritance
	One Solution: Priority Donation/Inheritance
	Case Study: Martian Pathfinder Rover
	Recall: What we want
	Recall: STCF
	Introducing the Multi-level Feedback Queue
	MLFQ (V 1.0)
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Learning behaviour
	Are we done?
	Are we done?
	MLFQ
	Many many different variants of MLQF
	History of Schedulers in Linux
	Case Study: Linux O(n) Scheduler
	Case Study: Linux O(1) Scheduler
	Case Study: O(1) Scheduler – User tasks
	User tasks – Priority Adjustment
	O(1) Scheduler – Real tasks
	An aside: Real-Time Scheduling

