
CS162
Operating Systems and
Systems Programming

Lecture 12

Scheduling
Core Concepts and Classic Policies

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

12.2Crooks CS162 © UCB Fall 2023

Recall: STCF

Schedule jobs in order of shortest completion time

Requires knowledge of
job completion time

Subject to
Starvation

Approximate duration
of CPU burst; encode

it in priorities

Dynamically
adapt

priorities

12.3Crooks CS162 © UCB Fall 2023

Recall: Multi Level Feedback Queue
Rule 1

If Priority(A) > Priority(B), A runs (B doesn’t).
Rule 2

If Priority(A) = Priority(B), A & B run RR using
quantum of queue.

Rule 3
A new job is placed in the topmost queue.

Rule 4
If a job uses up its time allotment at a given level
(regardless of how many times it has given up the

CPU), its priority is reduced.
Rule 5

After some time period S, move all the jobs in the
system to the topmost queue.

12.4Crooks CS162 © UCB Fall 2023

Recall: Multi Level Feedback Queue
Rule 1

If Priority(A) > Priority(B), A runs (B doesn’t).
Rule 2

If Priority(A) = Priority(B), A & B run RR using
quantum of queue.

Rule 3
A new job is placed in the topmost queue.

Rule 4
If a job uses up its time allotment at a given level
(regardless of how many times it has given up the

CPU), its priority is reduced.
Rule 5

After some time period S, move all the jobs in the
system to the topmost queue.

12.5Crooks CS162 © UCB Fall 2023

Recall: Learning behaviour
P1 Computes for 1 ms. Uses disk for 10 ms

P2 Computes for 50 ms.

q= 2 ms

q= 10 ms

q= 100 ms

Schedule P2P1P1 P1 P2

P2

P1

12.6Crooks CS162 © UCB Fall 2023

Many many different variants of MLQF

Change how prevent starvation

Change constants

Change scheduling policies within each queue

Most modern schedulers are variants of MLQF queues

12.7Crooks CS162 © UCB Fall 2023

What’s important?

IO-bound jobs have high priorities.
Get scheduled quickly. Run for short quantas.

Compute-bound jobs have low priority. Run with low
time quantas. Run when IO bound jobs blocked on IO.

To prevent starvation, all jobs get a chance to run in
a given period S.

No job says in the lower queue for ever. Account for
changes in workload.

12.8Crooks CS162 © UCB Fall 2023

Goals for Today

• What did “older” Linux schedulers do?

• Introducing the concept of proportional fair sharing
and CFS

• Understanding deadlocks more formally

12.9Crooks CS162 © UCB Fall 2023

Recall: History of Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards

12.10Crooks CS162 © UCB Fall 2023

Case Study: Linux O(n) Scheduler

At every context switch:
–Scan full list of processes in the ready queue
–Compute relevant priorities
–Select the best process to run

Scalability issues:
–Context switch cost increases as number of processes
increase
–Single queue even in multicore systems

12.11Crooks CS162 © UCB Fall 2023

Case Study: Linux O(1) Scheduler

Next process to run is chosen in constant time

Priority-based scheduler with 140 different priorities

Real-time/kernel tasks assigned priorities 0 to 99 (0 is
highest priority)

User tasks (interactive/batch) assigned priorities 100 to
139 (100 is highest priority)

Kernel/Realtime Tasks User Tasks

0 100 139

12.12Crooks CS162 © UCB Fall 2023

Case Study: O(1) Scheduler – User tasks

Per priority-level, each CPU has two ready queues

An active queue, for processes which have not used up
their time quanta

An expired queue, for processes who have

Timeslices/priorities/interactivity credits all computed when
jobs finishes timeslice

Timeslice depends on priority

12.13Crooks CS162 © UCB Fall 2023

User tasks – Priority Adjustment
User-task priority adjusted ±5 based on heuristics

» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg ⇒ more I/O bound the task, more reward (and
vice versa)

Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for
temporary changes in behavior

However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been
starved for too long…

12.14Crooks CS162 © UCB Fall 2023

O(1) Scheduler – Real tasks

Real-Time Tasks always preempt non-RT tasks

No dynamic adjustment of priorities

Scheduling schemes:
»SCHED_FIFO: preempts other tasks, no timeslice limit
»SCHED_RR: preempts normal tasks, RR scheduling

amongst tasks of same priority

12.15Crooks CS162 © UCB Fall 2023

An aside: Real-Time Scheduling
Goal

Predictability of Performance!

We need to predict with confidence worst case response
times for systems!

Real-time is about enforcing predictability,
 and does not equal fast computing.

12.16Crooks CS162 © UCB Fall 2023

Introducing the Completely Fair Scheduler

Key idea:
Proportional Fair Sharing

Give each job a share of
the CPU according to its

priority

12.17Crooks CS162 © UCB Fall 2023

Proportional Fair Sharing

Share the CPU proportionally

Give each job a share of the CPU according to its
priority

Low-priority jobs get to run less often

But all jobs can at least make progress
(no starvation)

12.18Crooks CS162 © UCB Fall 2023

Early Example: Lottery Scheduling

Give each job some number of
lottery tickets

On each time slice, randomly pick
a winning ticket

Each job gets at least one ticket

On average, CPU time is
proportional to number of tickets

given to each job

12.19Crooks CS162 © UCB Fall 2023

How to assign tickets?

Give Job A 50% of CPU, Job B 25%, Job C 10%

How can we use tickets to allow IO/interactive tasks to
run quickly?

Assign tasks more tickets!

Can lottery scheduling lead to starvation?
a) Yes b) No

Can lottery scheduling lead to priority inversion?

12.20Crooks CS162 © UCB Fall 2023

Temporary Unfairness

Given two jobs A and B of same run time
(#Qs) that are each supposed to receive 50%,

U = finish time of first / finish time of last

As a function of run time

Lose control over which job gets scheduled next.

Can suffer temporary bouts of unfairness

12.21Crooks CS162 © UCB Fall 2023

Stride Scheduling

Deterministic proportional fair sharing

 Stride of each job is 𝑏𝑏𝑏𝑏𝑏𝑏#𝑊𝑊
𝑁𝑁𝑖𝑖

The larger your share of tickets Ni,
the smaller your stride

W = 10,000,
A=100 tickets, B=50, C=250
A stride: 100, B: 200, C: 40

12.22Crooks CS162 © UCB Fall 2023

Stride Scheduling

Each job as a pass counter.

Scheduler picks a job with lowest pass, runs it,
add its stride to its pass

Low-stride jobs (lots of tickets) run more often

12.23Crooks CS162 © UCB Fall 2023

Stride Scheduling
W = 10,000,

A=200 tickets, B=100 tickets, C=50 tickets

Strides: 20050 100

Schedule 50

100

200

100

200

100

150
200

100

200
200

150

200
200

200

250
200

200

250
300

200

Ready
Queue

100

200

50

12.24Crooks CS162 © UCB Fall 2023

Linux Completely Fair Scheduler (CFS)
CFS models an “ideal, precise multi-tasking CPU”

Each process gets an equal share of CPU

N threads “simultaneously” execute on 1
𝑁𝑁
 of CPU

Model:
“Perfectly”
subdivided CPU:CPU T

im
e T1 T2 T3

1
𝑁𝑁

Each thread gets 1
𝑁𝑁
 of the

cycles

Optimise a global metric, not a
local decision

12.25Crooks CS162 © UCB Fall 2023

Linux Completely Fair Scheduler (CFS)

Basic Idea
Track CPU time per thread

CPU T
im
e

T1

T2
T3

1
𝑁𝑁

CFS: Average rate
of execution = 1

𝑁𝑁
:

Scheduling Decision

“Repair” illusion of complete
fairness

Choose thread with minimum
CPU time

12.26Crooks CS162 © UCB Fall 2023

Linux Completely Fair Scheduler (CFS)

Fair by construction

Scheduling Cost is O(log n)
Threads are stored in a Red-Black tree.

Easy to capture interactivity
Sleeping threads don’t advance their CPU time, so
automatically get a boost when wake up again

12.27Crooks CS162 © UCB Fall 2023

Low response time & Starvation-freedom
Make sure that everyone gets to run in a given

period of time

Constraint 1: Target Latency

Period of time over which every process
 gets service

Quanta = Target_Latency / n

Linux CFS: Responsiveness

12.28Crooks CS162 © UCB Fall 2023

Constraint 1: Target Latency

Quanta = Target_Latency / n

Target Latency: 20 ms, 4 Processes
Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes
Each process gets 0.1ms time slice

Linux CFS: Latency

12.29Crooks CS162 © UCB Fall 2023

Linux CFS: Throughput

Goal: Throughput
Avoid excessive overhead

Constraint 2: Minimum Granularity
Minimum length of any time slice

Target Latency 20 ms,
Minimum Granularity 1 ms, 200 processes

Each process gets 1 ms time slice

12.30Crooks CS162 © UCB Fall 2023

Constraints in the Wild (Linux Kernel)

12.31Crooks CS162 © UCB Fall 2023

Priorities in Unix

nice values range from -20 to 19

Negative values are “not nice”

If you wanted to let your friends get more
time, you would nice up your job

Easy to implement for O(1) scheduler, how does
it work for CFS?

We want to implement proportional fair sharing

12.32Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares

Allow different threads to have different
 rates of execution (cycles/time)

Use weights!
Assign a weight wi to each process I to compute the switching quanta Qi

Basic equal share: 𝑄𝑄𝑖𝑖 = Target Latency ⋅ 1
𝑁𝑁

Weighted Share: 𝑄𝑄𝑏𝑏 = �𝑤𝑤𝑖𝑖
∑𝑝𝑝 𝑤𝑤𝑝𝑝

⋅ Target Latency

12.33Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares

Reuse nice value to reflect share, rather than priority

CFS uses nice values to scale weights exponentially

Weight=1024/(1.25)nice

12.34Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms

Two CPU-Bound Threads
–Thread A has weight 1
–Thread B has weight 4

What should the time slice of A and B be?
Weighted Share: 𝑄𝑄𝑏𝑏 = �𝑤𝑤𝑖𝑖

∑𝑝𝑝 𝑤𝑤𝑝𝑝 ⋅ Target Latency

A = (1/5) * 20 = 4 B = (4/5) * 20 = 16

12.35Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

0 0

12.36Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

4 16

A B

12.37Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

8 16

A B A

12.38Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

16 16

A B A A A

12.39Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

16 16

A B A A A

A and B got 50% of the CPU. Something
went wrong!

12.40Crooks CS162 © UCB Fall 2023

Virtual Runtime

Must track a thread's virtual runtime
rather than its true physical runtime

Higher weight: Virtual runtime increases more slowly

Lower weight: Virtual runtime increases more quickly

Virtual Runtime = Virtual Runtime + ⁄𝟏𝟏 𝑤𝑤𝑖𝑖 Physical Runtime

12.41Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

0 0

12.42Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

4 0

A

Virtual Runtime = 0 + Physical Runtime / Weight = 0 + 4/1

12.43Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

4 4

A

Virtual Runtime = 0 + Physical Runtime / Weight = 0 + 16/4 = 4

B

12.44Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

8 4

A

Virtual Runtime = 4 + Physical Runtime / Weight = 4 + 4/1 = 8

B A

12.45Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

8 8

A

Virtual Runtime = 4 + Physical Runtime / Weight = 4 + 16/4 = 8

B A B

12.46Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares
A “Physical” CPU utilization: 4 + 4 = 8

B “Physical” CPU utilization: 16 + 16 = 32

A B

8 8

A B A B

But equal virtual runtime!
CFS shares vruntime equally

12.47Crooks CS162 © UCB Fall 2023

Linux CFS: Proportional Shares

Virtual
CPU Time

B A

Physical
CPU Time

B
A

16 (wB=4)

4 (wA=1)

12.48Crooks CS162 © UCB Fall 2023

Summary: Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards

Did not scale with large
number of processes

Heuristics too complex

Proportional Fair Sharing.
Throughput and Latency

constraints
Gives all processes 1/N
*virtual time * on CPU

	CS162�Operating Systems and�Systems Programming�Lecture 12���Scheduling�Core Concepts and Classic Policies�
	Recall: STCF
	Recall: Multi Level Feedback Queue
	Recall: Multi Level Feedback Queue
	Recall: Learning behaviour
	Many many different variants of MLQF
	What’s important?
	Goals for Today
	Recall: History of Schedulers in Linux
	Case Study: Linux O(n) Scheduler
	Case Study: Linux O(1) Scheduler
	Case Study: O(1) Scheduler – User tasks
	User tasks – Priority Adjustment
	O(1) Scheduler – Real tasks
	An aside: Real-Time Scheduling
	Introducing the Completely Fair Scheduler
	Proportional Fair Sharing
	Early Example: Lottery Scheduling
	How to assign tickets?
	Temporary Unfairness
	Stride Scheduling
	Stride Scheduling
	Stride Scheduling
	Linux Completely Fair Scheduler (CFS)
	Linux Completely Fair Scheduler (CFS)
	Linux Completely Fair Scheduler (CFS)
	Linux CFS: Responsiveness
	Linux CFS: Latency
	Linux CFS: Throughput
	Constraints in the Wild (Linux Kernel)
	Priorities in Unix
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Virtual Runtime
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Summary: Schedulers in Linux

