
CS162
Operating Systems and
Systems Programming

Lecture 13

Deadlock
Professor Natacha Crooks

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

12.2Crooks CS162 © UCB Fall 2022

Linux Completely Fair Scheduler (CFS)

Basic Idea
Track CPU time per thread

CPU T
im
e

T1

T2
T3

1
𝑁𝑁

CFS: Average rate
of execution = 1

𝑁𝑁
:

Scheduling Decision

“Repair” illusion of complete
fairness

Choose thread with minimum
CPU time

12.3Crooks CS162 © UCB Fall 2022

Linux Completely Fair Scheduler (CFS)

Fair by construction

Scheduling Cost is O(log n)
Threads are stored in a Red-Black tree.

Easy to capture interactivity
Sleeping threads don’t advance their CPU time, so
automatically get a boost when wake up again

12.4Crooks CS162 © UCB Fall 2022

Low response time & Starvation-freedom
Make sure that everyone gets to run in a given

period of time

Constraint 1: Target Latency

Period of time over which every process
 gets service

Quanta = Target_Latency / n

Linux CFS: Responsiveness

12.5Crooks CS162 © UCB Fall 2022

Constraint 1: Target Latency

Quanta = Target_Latency / n

Target Latency: 20 ms, 4 Processes
Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes
Each process gets 0.1ms time slice

Linux CFS: Latency

12.6Crooks CS162 © UCB Fall 2022

Linux CFS: Throughput

Goal: Throughput
Avoid excessive overhead

Constraint 2: Minimum Granularity
Minimum length of any time slice

Target Latency 20 ms,
Minimum Granularity 1 ms, 200 processes

Each process gets 1 ms time slice

12.7Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares

Allow different threads to have different
 rates of execution (cycles/time)

Use weights!
Assign a weight wi to each process I to compute the switching quanta Qi

Basic equal share: 𝑄𝑄𝑖𝑖 = Target Latency ⋅ 1
𝑁𝑁

Weighted Share: 𝑄𝑄𝑖𝑖 = �𝑤𝑤𝑖𝑖
∑𝑝𝑝 𝑤𝑤𝑝𝑝

⋅ Target Latency

12.8Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms

Two CPU-Bound Threads
–Thread A has weight 1
–Thread B has weight 4

What should the time slice of A and B be?
Weighted Share: 𝑄𝑄𝑖𝑖 = �𝑤𝑤𝑖𝑖

∑𝑝𝑝 𝑤𝑤𝑝𝑝 ⋅ Target Latency

A = (1/5) * 20 = 4 B = (4/5) * 20 = 16

12.9Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

0 0

12.10Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

4 16

A B

12.11Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

8 16

A B A

12.12Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

16 16

A B A A A

12.13Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

16 16

A B A A A

A and B got 50% of the CPU. Something
went wrong!

12.14Crooks CS162 © UCB Fall 2022

Virtual Runtime

Must track a thread's virtual runtime
rather than its true physical runtime

Higher weight: Virtual runtime increases more slowly

Lower weight: Virtual runtime increases more quickly

Virtual Runtime = Virtual Runtime + ⁄𝟏𝟏 𝑤𝑤𝑖𝑖 Physical Runtime

12.15Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

0 0

12.16Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

4 0

A

Virtual Runtime = 0 + Physical Runtime / Weight = 0 + 4/1

12.17Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

4 4

A

Virtual Runtime = 0 + Physical Runtime / Weight = 0 + 16/4 = 4

B

12.18Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

8 4

A

Virtual Runtime = 4 + Physical Runtime / Weight = 4 + 4/1 = 8

B A

12.19Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

8 8

A

Virtual Runtime = 4 + Physical Runtime / Weight = 4 + 16/4 = 8

B A B

12.20Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
A “Physical” CPU utilization: 4 + 4 = 8

B “Physical” CPU utilization: 16 + 16 = 32

A B

8 8

A B A B

But equal virtual runtime!
CFS shares vruntime equally

12.21Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares

Virtual
CPU Time

B A

Physical
CPU Time

B
A

16 (wB=4)

4 (wA=1)

What about new jobs or
very sleepy jobs?

12.22Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares

Reuse nice value to reflect share, rather than priority

CFS uses nice values to scale weights exponentially

Weight=1024/(1.25)nice

12.23Crooks CS162 © UCB Fall 2022

CFS & Priorities Cheat Sheet

Weight the real running time with priority of the task

Nice 0 is the reference: vruntime == real runtime ○

Nice < 0: vruntime increases slower than real time ○

Nice > 0: vruntime increases faster than real time

12.24Crooks CS162 © UCB Fall 2022

Summary: Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards

Did not scale with large
number of processes

Heuristics too complex

Proportional Fair Sharing.
Throughput and Latency

constraints
Gives all processes 1/N
*virtual time * on CPU

12.25Crooks CS162 © UCB Fall 2022

Summary: Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards

Did not scale with large
number of processes

Heuristics too complex

Proportional Fair Sharing.
Throughput and Latency

constraints
Gives all processes 1/N
*virtual time * on CPU

12.26Crooks CS162 © UCB Fall 2022

Understanding Deadlock

I will if you will

I will if you will

12.27Crooks CS162 © UCB Fall 2022

Deadlock: A Deadly type of Starvation

Deadlock: cyclic waiting for resources

Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

12.28Crooks CS162 © UCB Fall 2022

Deadlock: A Deadly type of Starvation

Starvation: thread waits indefinitely

Deadlock implies starvation
but starvation does not imply deadlock

Starvation can end (but doesn’t have to)
Deadlock can’t end without external intervention

12.29Crooks CS162 © UCB Fall 2022

Example: Single-Lane Bridge Crossing

12.30Crooks CS162 © UCB Fall 2022

Bridge Crossing Example

Rules:
–Car must own the segment under them
–Must acquire segment that they are moving into
–For bridge: traffic only in one direction at a time

Each segment of road can be viewed as a resource

12.31Crooks CS162 © UCB Fall 2022

Bridge Crossing Example

Car must own the segment under them
Must acquire segment that they are moving into
For bridge: traffic only in one direction at a time

12.32Crooks CS162 © UCB Fall 2022

Bridge Crossing Example

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting
for resources

12.33Crooks CS162 © UCB Fall 2022

Bridge Crossing Example

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting
for resources

Could be resolved by “external” intervention:
- fork-lifting a car of the bridge (equivalent to killing a thread)

- Asking cars to backup
(equivalent to removing the resource from the thread)

12.34Crooks CS162 © UCB Fall 2022

Starvation does not mean deadlock!

Stop sign: purple car must
wait for cars to release

resources.
Cars on highway never do!

Purple car is starved

12.35Crooks CS162 © UCB Fall 2022

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

This lock pattern exhibits non-deterministic deadlock

A system is subject to deadlock if deadlock can
happen in any execution

Will threads deadlock
a) Always b) Never c) Sometimes d) I’m still trying to cross the road

12.36Crooks CS162 © UCB Fall 2022

Deadlock with Locks: “Lucky” Case
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!

12.37Crooks CS162 © UCB Fall 2022

Other Types of Deadlock

Threads often block waiting for resources
–Locks
–Terminals
–Printers
–CD drives
–Memory

Threads often block waiting for other threads
–Pipes
–Sockets

You can deadlock on any of these!

12.38Crooks CS162 © UCB Fall 2022

Dining Computer Scientists Problem

Five chopsticks/Five
computer scientists

Need two chopsticks to eat

12.39Crooks CS162 © UCB Fall 2022

Free for all leads to deadlock

12.40Crooks CS162 © UCB Fall 2022

Intervention needed
Fixing deadlock needs external

intervention!

How could we have prevented
this?

 - Give everyone two
chopsticks

 - Make everyone “give up”
after a while

 - Require everyone to pick up
both chopsticks atomically

12.41Crooks CS162 © UCB Fall 2022

Four requirements for occurrence of deadlock

1) Mutual exclusion and bounded resources
Only one thread at a time can use a resource.

2) Hold and wait
Thread holding at least one resource is waiting to
acquire additional resources held by other threads

12.42Crooks CS162 © UCB Fall 2022

Four requirements for occurrence of deadlock

3) No preemption
Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

4) Circular wait
There exists a set {T1, …, Tn} of waiting threads

»T1 is waiting for a resource that is held by T2
»T2 is waiting for a resource that is held by T3

»…
»Tn is waiting for a resource that is held by T1

12.43Crooks CS162 © UCB Fall 2022

Detecting Deadlock: Resource-Allocation Graph
System Model

A set of Threads T1, T2, . . ., Tn

Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances

Each thread
Request() / Use() / Release() a resource:

12.44Crooks CS162 © UCB Fall 2022

Detecting Deadlock: Resource-Allocation Graph
Resource-Allocation Graph

–V is partitioned into two types:

T = {T1, T2, …, Tn},
the set threads in the system.

R = {R1, R2, …, Rm},
the set of resource types in system

–request edge – directed edge T1 → Rj
–assignment edge – directed edge Rj → Ti

Symbols

R1
R2

T1 T2

12.45Crooks CS162 © UCB Fall 2022

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3 R4
Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3 R4
Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

12.46Crooks CS162 © UCB Fall 2022

Deadlock Detection Algorithm

Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type)

 [FreeResources]: Current free resources each type

[RequestX]: Current requests from thread X

 [AllocX]: Current resources held by thread X

12.47Crooks CS162 © UCB Fall 2022

Deadlock Detection Algorithm
See if tasks can eventually terminate on their own

 [Avail] = [FreeResources]
 Add all threads to UNFINISHED
 do {

 done = true
 Foreach thread in UNFINISHED {
 if ([Requestnode] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocnode]
 done = false
 }
 }
 } until(done)

 Threads left in UNFINISHED ⇒ deadlocked

12.48Crooks CS162 © UCB Fall 2022

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
[Avail] = [FreeResources]
 Add all threads to UNFINISHED
 do {
 done = true

 Foreach thread in UNFINISHED {
 if ([Requestnode] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocnode]
 done = false
 }
 }
 } until(done)

Threads left in UNFINISHED ⇒ deadlocked

[Avail] = {0,0}
UNFINISHED = T1, T2, T3, T4

Looking at T1: [1,0] > [0,0]

Looking at T2: [0,0] <= [0,0]
Avail = [1,0]
UNFINISHED = T1,T3,T4

Looking at T3: [0,1] > [1,0]

Looking at T4
[0,0] <= [0,0]
Avail = [1,1]
UNFINISHED = T1, T3

Looking at T1: [1,0] <= [1,1]
Avail = [2,1]
UNFINISHED = T3

Looking at T3: [0,1] <= [2,1]
Avail = [2,2]
UNFINISHED = Empty!

12.49Crooks CS162 © UCB Fall 2022

How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery
Let deadlock happen, and figure out how to recover from it

Deadlock avoidance
Dynamically delay resource requests so deadlock doesn’t happen

Deadlock denial
 Ignore the possibility of deadlock

12.50Crooks CS162 © UCB Fall 2022

Deadlock prevention

Condition 1: Mutual exclusion and bounded resources
=> Provide sufficient resources

Condition 2: Hold and wait
⇒Abort request or acquire requests atomically

Condition 3: No preemption
=> Preempt threads

Condition 4: Circular wait
=> Order resources and always acquire resources

in the same way

12.51Crooks CS162 © UCB Fall 2022

Condition 1 Fix: (Virtually) Infinite Resources

With virtual memory we have “infinite” space so
everything will always succeed

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

12.52Crooks CS162 © UCB Fall 2022

Condition 2 Fix: Request Resources Atomically

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B:
Acquire_both(y, x);
…
x.Release();
y.Release();

Rather than:

12.53Crooks CS162 © UCB Fall 2022

Condition 3 Fix: Preemption

Force thread to give up resource

Common technique in databases using database aborts
–A transaction is “aborted”: all of its actions are

undone, and the transaction must be retried

Common technique in wireless networks:
– Everyone speaks at once. When a resource

collision is detected, retry at a new, random time

12.54Crooks CS162 © UCB Fall 2022

Condition 4 Fix: Circular Waiting
Force all threads to request resources

in the same order
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

12.55Crooks CS162 © UCB Fall 2022

Condition 4 Fix: Circular Waiting

1

2

3
4

5

Garcia: first 1 then 5
Crooks: first 2 then 1
Turing: first 3 then 2
Johnson: first 4 than 3
Liskov: first 5 then 4

If ensure that Garcia
graphs chopstick 5
followed by 1, no
deadlock!

12.56Crooks CS162 © UCB Fall 2022

How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery
Let deadlock happen, and figure out how to recover from it

Deadlock avoidance
Dynamically delay resource requests so deadlock doesn’t happen

Deadlock denial
 Ignore the possibility of deadlock

12.57Crooks CS162 © UCB Fall 2022

Techniques for Deadlock Avoidance

Attempt 1

When a thread requests a resource, OS checks if
it would result in deadlock

If not, it grants the resource right away

If so, it waits for other threads to release
resources

12.58Crooks CS162 © UCB Fall 2022

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

Wait?

But it’s
already
too late…

Blocks…

This does not work!

12.59Crooks CS162 © UCB Fall 2022

Deadlock Avoidance: Three States
Safe state

System can delay resource acquisition to prevent
deadlock

Unsafe state
No deadlock yet…

But threads can request resources in a pattern that
unavoidably leads to deadlock

Deadlocked state
There exists a deadlock in the system

Deadlock avoidance: prevent system from
reaching an unsafe state

12.60Crooks CS162 © UCB Fall 2022

Deadlock Avoidance: Three States

A acquires x.

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

There exists a sequence A-A(y),A-R(y),A-R(x), B-A(y),
B-A(x), B-R(x), B-R(y) => safe state

B acquires y.
No sequence that won’t lead to deadlock. => unsafe state

12.61Crooks CS162 © UCB Fall 2022

Banker’s Algorithm for Avoiding Deadlock

Banker’s algorithm ensures never enter
an unsafe state.

Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

Technique: pretend each request is granted, then run
deadlock detection

algorithm

12.62Crooks CS162 © UCB Fall 2022

Banker’s Algorithm for Avoiding Deadlock
[Avail] = [FreeResources]
 Add all threads to UNFINISHED
 do {
 done = true
 Foreach thread in UNFINISHED {
 if ([Requestthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

[Avail] = [FreeResources]
 Add all threads to UNFINISHED
 do {
 done = true
 Foreach threads in UNFINISHED {
 if ([Maxthreads]-[Allocthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

12.63Crooks CS162 © UCB Fall 2022

Banker’s Algorithm for Avoiding Deadlock
[Avail] = [FreeResources]
 Add all threads to UNFINISHED
 do {
 done = true
 Foreach threads in UNFINISHED {
 if ([Maxthreads]-[Allocthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

Step 1: “Assume” request is made

Step 2: If request is made, is system still in SAFE state?
 There exists a sequence {T1, T2, … Tn} such that all transactions finish

Step 3: If SAFE, grant resources. If UNSAFE, delay

12.64Crooks CS162 © UCB Fall 2022

Banker’s Algorithm for Avoiding Deadlock
[Avail] = [FreeResources]
 Add all threads to UNFINISHED
 do {
 done = true
 Foreach threads in UNFINISHED {
 if ([Maxthreads]-[Allocthread] <= [Avail]) {
 remove thread from UNFINISHED
 [Avail] = [Avail] + [Allocthread]
 done = false
 }
 }
 } until(done)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

When Thread A acquires x:

Avail = [0,1]
For A: [1,1] – [1,0] <= [0,1]
Update Avail to = 1,1.
Remove A from UNFINISHED
For B:
[1,1] – [0,0] <= [1,1]
Update Avail to = [1,1].
Remove B from UNFINISHED

Safe state!

When Thread B acquires y:

Avail = [0,0]
For A: [1,1] – [1,0] <= [0,0]
For B: [1,1] – [0,1] <= [0,0]

UNFINISHED not empty

Unsafe state! Must delay
acquiring y!

12.65Crooks CS162 © UCB Fall 2022

Summary
Deadlock => Starvation, Starvation does not imply

deadlock

Four conditions for deadlocks
Mutual exclusion
Hold and wait
No preemption
Circular wait

Techniques for addressing deadlock: prevention, recovery,
avoidance, or denial

Banker’s algorithm for avoiding deadlock

	CS162�Operating Systems and�Systems Programming�Lecture 13���Deadlock
	Linux Completely Fair Scheduler (CFS)
	Linux Completely Fair Scheduler (CFS)
	Linux CFS: Responsiveness
	Linux CFS: Latency
	Linux CFS: Throughput
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Virtual Runtime
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	Linux CFS: Proportional Shares
	CFS & Priorities Cheat Sheet
	Summary: Schedulers in Linux
	Summary: Schedulers in Linux
	 Understanding Deadlock
	Deadlock: A Deadly type of Starvation
	Deadlock: A Deadly type of Starvation
	Example: Single-Lane Bridge Crossing
	Bridge Crossing Example
	Bridge Crossing Example
	Bridge Crossing Example
	Bridge Crossing Example
	Starvation does not mean deadlock!
	Deadlock with Locks
	Deadlock with Locks: “Lucky” Case
	Other Types of Deadlock
	Dining Computer Scientists Problem
	Free for all leads to deadlock
	Intervention needed
	Four requirements for occurrence of deadlock
	Four requirements for occurrence of deadlock
	Detecting Deadlock: Resource-Allocation Graph
	Detecting Deadlock: Resource-Allocation Graph
	Resource-Allocation Graph Examples
	Deadlock Detection Algorithm
	Deadlock Detection Algorithm
	Deadlock Detection Algorithm
	How should a system deal with deadlock?
	Deadlock prevention
	Condition 1 Fix: (Virtually) Infinite Resources
	Condition 2 Fix: Request Resources Atomically
	Condition 3 Fix: Preemption
	Condition 4 Fix: Circular Waiting
	Slide Number 55
	How should a system deal with deadlock?
	Techniques for Deadlock Avoidance
	Techniques for Deadlock Avoidance
	Deadlock Avoidance: Three States
	Deadlock Avoidance: Three States
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Summary

