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Linux Completely Fair Scheduler (CFS)

Basic Idea
Track CPU time per thread

CPU T
im
e

T1

T2
T3

1
𝑁𝑁

CFS: Average rate 
of execution = 1

𝑁𝑁
:

Scheduling Decision

“Repair” illusion of complete 
fairness

Choose thread with minimum 
CPU time
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Linux Completely Fair Scheduler (CFS)

Fair by construction

Scheduling Cost is O(log n)
Threads are stored in a Red-Black tree.

Easy to capture interactivity
Sleeping threads don’t advance their CPU time, so 
automatically get a boost when wake up again
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Low response time & Starvation-freedom
Make sure that everyone gets to run in a given 

period  of time

Constraint 1: Target Latency

Period of time over which every process
 gets service

Quanta = Target_Latency / n

Linux CFS: Responsiveness
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Constraint 1: Target Latency

Quanta = Target_Latency / n

Target Latency: 20 ms, 4 Processes
Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes
Each process gets 0.1ms time slice

Linux CFS: Latency
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Linux CFS: Throughput

Goal: Throughput
Avoid excessive overhead

Constraint 2: Minimum Granularity
Minimum length of any time slice

Target Latency 20 ms, 
Minimum Granularity 1 ms, 200 processes

Each process gets 1 ms time slice
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Linux CFS: Proportional Shares

Allow different threads to have different
 rates of execution (cycles/time)

Use weights! 
Assign a weight wi to each process I to compute the switching quanta Qi

Basic equal share: 𝑄𝑄𝑖𝑖 = Target Latency ⋅ 1
𝑁𝑁

Weighted Share: 𝑄𝑄𝑖𝑖 = �𝑤𝑤𝑖𝑖
∑𝑝𝑝 𝑤𝑤𝑝𝑝

⋅ Target Latency
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms

Two CPU-Bound Threads
–Thread A has weight 1
–Thread B has weight 4

What should the time slice of A and B be? 
Weighted Share: 𝑄𝑄𝑖𝑖 = �𝑤𝑤𝑖𝑖

∑𝑝𝑝 𝑤𝑤𝑝𝑝 ⋅ Target Latency

A = (1/5) * 20 = 4 B = (4/5) * 20 = 16



12.9Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

0 0
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

4 16

A B
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

8 16

A B A
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

16 16

A B A A A
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

16 16

A B A A A

A and B got 50% of the CPU. Something 
went wrong!
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Virtual Runtime

Must track a thread's virtual runtime 
rather than its true physical runtime

Higher weight: Virtual runtime increases more slowly

Lower weight: Virtual runtime increases more quickly

Virtual Runtime = Virtual Runtime + ⁄𝟏𝟏 𝑤𝑤𝑖𝑖  Physical Runtime
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

Recall: Run the thread with the lowest amount of CPU use

A B

0 0
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

4 0

A

Virtual Runtime = 0 + Physical Runtime / Weight = 0 + 4/1
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

4 4

A

Virtual Runtime = 0 + Physical Runtime / Weight = 0 + 16/4 = 4

B



12.18Crooks CS162 © UCB Fall 2022

Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

8 4

A

Virtual Runtime = 4 + Physical Runtime / Weight = 4 + 4/1 = 8

B A
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Linux CFS: Proportional Shares
Target Latency = 20ms

Minimum Granularity = 1ms
A timeslice = 4ms
B timeslice = 16 ms

A B

8 8

A

Virtual Runtime = 4 + Physical Runtime / Weight = 4 + 16/4 = 8

B A B
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Linux CFS: Proportional Shares
A “Physical” CPU utilization: 4 + 4 = 8

B “Physical” CPU utilization: 16 + 16 = 32

A B

8 8

A B A B

But equal virtual runtime!
CFS shares vruntime equally
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Linux CFS: Proportional Shares

Virtual
CPU Time

B A

Physical
CPU Time

B
A

16 (wB=4)

4 (wA=1)

What about new jobs or 
very sleepy jobs? 
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Linux CFS: Proportional Shares

Reuse nice value to reflect share, rather than priority

CFS uses nice values to scale weights exponentially 

Weight=1024/(1.25)nice
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CFS & Priorities Cheat Sheet

Weight the real running time with priority of the task

Nice 0 is the reference: vruntime == real runtime ○ 

Nice < 0: vruntime increases slower than real time ○ 

Nice > 0: vruntime increases faster than real time 
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Summary: Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards

Did not scale with large 
number of processes

Heuristics too complex

Proportional Fair Sharing. 
Throughput and Latency 

constraints
Gives all processes 1/N 
*virtual time * on CPU
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Summary: Schedulers in Linux

O(n) scheduler
Linux 2.4 to Linux 2.6

O(1) scheduler
Linux 2.6 to 2.6.22

CFS scheduler
Linux 2.6.23 onwards

Did not scale with large 
number of processes

Heuristics too complex

Proportional Fair Sharing. 
Throughput and Latency 

constraints
Gives all processes 1/N 
*virtual time * on CPU
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Understanding Deadlock

I will if you will

I will if you will
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Deadlock: A Deadly type of Starvation

Deadlock: cyclic waiting for resources

Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By
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Deadlock: A Deadly type of Starvation

Starvation: thread waits indefinitely

Deadlock implies starvation 
but starvation does not imply deadlock

Starvation can end (but doesn’t have to)
Deadlock can’t end without external intervention
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Example: Single-Lane Bridge Crossing
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Bridge Crossing Example

Rules:
–Car must own the segment under them
–Must acquire segment that they are moving into
–For bridge: traffic only in one direction at a time 

Each segment of road can be viewed as a resource
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Bridge Crossing Example

Car must own the segment under them
Must acquire segment that they are moving into
For bridge: traffic only in one direction at a time 
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Bridge Crossing Example

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting 
for resources
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Bridge Crossing Example

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
ByDeadlock:

Circular waiting 
for resources

Could be resolved by “external” intervention:
- fork-lifting a car of the bridge (equivalent to killing a thread)

- Asking cars to backup 
(equivalent to removing the resource from the thread)
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Starvation does not mean deadlock!

Stop sign: purple car must 
wait for cars to release 

resources.
Cars on highway never do!

Purple car is starved
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Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

This lock pattern exhibits non-deterministic deadlock

A system is subject to deadlock if deadlock can 
happen in any execution

Will threads deadlock
a) Always  b) Never c) Sometimes d) I’m still trying to cross the road
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Deadlock with Locks: “Lucky” Case
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!
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Other Types of Deadlock

Threads often block waiting for resources
–Locks
–Terminals
–Printers
–CD drives
–Memory

Threads often block waiting for other threads
–Pipes
–Sockets

You can deadlock on any of these!
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Dining Computer Scientists Problem

Five chopsticks/Five 
computer scientists

Need two chopsticks to eat
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Free for all leads to deadlock
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Intervention needed
Fixing deadlock needs external 

intervention!

How could we have prevented 
this?

 - Give everyone two 
chopsticks

 - Make everyone “give up” 
after a while

 - Require everyone to pick up 
both chopsticks atomically
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Four requirements for occurrence of deadlock

1) Mutual exclusion and bounded resources
Only one thread at a time can use a resource.

2) Hold and wait
Thread holding at least one resource is waiting to 
acquire additional resources held by other threads
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Four requirements for occurrence of deadlock

3) No preemption
Resources are released only voluntarily by the thread 
holding the resource, after thread is finished with it

4) Circular wait
There exists a set {T1, …, Tn} of waiting threads

»T1 is waiting for a resource that is held by T2
»T2 is waiting for a resource that is held by T3

»…
»Tn is waiting for a resource that is held by T1
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Detecting Deadlock:  Resource-Allocation Graph
System Model 

A set of Threads T1, T2, . . ., Tn

Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances

Each thread 
Request() / Use() / Release() a resource:
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Detecting Deadlock:  Resource-Allocation Graph
Resource-Allocation Graph

–V is partitioned into two types:

T = {T1, T2, …, Tn}, 
the set threads in the system.

R = {R1, R2, …, Rm}, 
the set of resource types in system

–request edge – directed edge T1 → Rj
–assignment edge – directed edge Rj → Ti

Symbols

R1
R2

T1 T2
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Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3 R4
Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3 R4
Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock
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Deadlock Detection Algorithm

Let [X] represent an m-ary vector of non-negative 
integers (quantities of resources of each type)

 [FreeResources]: Current free resources each type

[RequestX]: Current requests from thread X

 [AllocX]: Current resources held by thread X
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Deadlock Detection Algorithm
See if tasks can eventually terminate on their own

  [Avail] = [FreeResources] 
 Add all threads to UNFINISHED 
 do {

   done = true
  Foreach thread in UNFINISHED { 
   if ([Requestnode] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocnode]
    done = false
   }
  }
 } until(done) 

 Threads left in UNFINISHED ⇒ deadlocked



12.48Crooks CS162 © UCB Fall 2022

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
[Avail] = [FreeResources] 
 Add all threads to UNFINISHED 
 do {
   done = true

  Foreach thread in UNFINISHED { 
   if ([Requestnode] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocnode]
    done = false
   }
  }
 } until(done)  
  

Threads left in UNFINISHED ⇒ deadlocked

[Avail] = {0,0}
UNFINISHED = T1, T2, T3, T4

Looking at T1: [1,0] > [0,0]

Looking at T2: [0,0] <= [0,0]
Avail = [1,0]
UNFINISHED = T1,T3,T4

Looking at T3: [0,1] > [1,0]

Looking at T4
[0,0] <= [0,0]
Avail = [1,1]
UNFINISHED = T1, T3 

Looking at T1: [1,0] <= [1,1]
Avail = [2,1]
UNFINISHED = T3

Looking at T3: [0,1] <= [2,1]
Avail = [2,2]
UNFINISHED = Empty!
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How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery
Let deadlock happen, and figure out how to recover from it

Deadlock avoidance
Dynamically delay resource requests so deadlock doesn’t happen

Deadlock denial
 Ignore the possibility of deadlock
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Deadlock prevention

Condition 1: Mutual exclusion and bounded resources
=> Provide sufficient resources

Condition 2: Hold and wait
⇒Abort request or acquire requests atomically

Condition 3: No preemption
=> Preempt threads

Condition 4: Circular wait
=> Order resources and always acquire resources 

in the same way
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Condition 1 Fix: (Virtually) Infinite Resources

With virtual memory we have “infinite” space so 
everything will always succeed

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)
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Condition 2 Fix: Request Resources Atomically

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B:
Acquire_both(y, x);
…
x.Release();
y.Release();

Rather than:
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Condition 3 Fix: Preemption

Force thread to give up resource

Common technique in databases using database aborts
–A transaction is “aborted”: all of its actions are 

undone, and the transaction must be retried

Common technique in wireless networks:
– Everyone speaks at once. When a resource 

collision is detected, retry at a new, random time
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Condition 4 Fix: Circular Waiting
Force all threads to request resources 

in the same order
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();
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Condition 4 Fix: Circular Waiting

1

2

3
4

5

Garcia: first 1 then 5
Crooks: first 2 then 1
Turing: first 3 then 2
Johnson: first 4 than 3
Liskov: first 5 then 4

If ensure that Garcia 
graphs chopstick 5 
followed by 1, no 
deadlock!
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How should a system deal with deadlock?

Deadlock prevention
Write your code in a way that it isn’t prone to deadlock

Deadlock recovery
Let deadlock happen, and figure out how to recover from it

Deadlock avoidance
Dynamically delay resource requests so deadlock doesn’t happen

Deadlock denial
 Ignore the possibility of deadlock
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Techniques for Deadlock Avoidance

Attempt 1

When a thread requests a resource, OS checks if 
it would result in deadlock

If not, it grants the resource right away

If so, it waits for other threads to release 
resources
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Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

Wait?

But it’s 
already 
too late…

Blocks…

This does not work!
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Deadlock Avoidance: Three States
Safe state

System can delay resource acquisition to prevent 
deadlock

Unsafe state
No deadlock yet…

But threads can request resources in a pattern that 
unavoidably leads to deadlock

Deadlocked state
There exists a deadlock in the system

Deadlock avoidance: prevent system from 
reaching an unsafe state
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Deadlock Avoidance: Three States

A acquires x. 

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

There exists a sequence A-A(y),A-R(y),A-R(x), B-A(y), 
B-A(x), B-R(x), B-R(y) => safe state

B acquires y. 
No sequence that won’t lead to deadlock. => unsafe state
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Banker’s Algorithm for Avoiding Deadlock

Banker’s algorithm ensures never enter 
an unsafe state. 

Evaluate each request and grant if some 
ordering of threads is still deadlock free afterward 

Technique: pretend each request is granted, then run 
deadlock detection 

algorithm
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Banker’s Algorithm for Avoiding Deadlock
[Avail] = [FreeResources] 
 Add all threads to UNFINISHED 
 do {
  done = true
  Foreach thread in UNFINISHED { 
   if ([Requestthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)

[Avail] = [FreeResources] 
 Add all threads to UNFINISHED 
 do {
  done = true
  Foreach threads in UNFINISHED { 
   if ([Maxthreads]-[Allocthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)
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Banker’s Algorithm for Avoiding Deadlock
[Avail] = [FreeResources] 
 Add all threads to UNFINISHED 
 do {
  done = true
  Foreach threads in UNFINISHED { 
   if ([Maxthreads]-[Allocthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)

Step 1: “Assume” request is made

Step 2: If request is made, is system still in SAFE state? 
 There exists a sequence {T1, T2, … Tn} such that all transactions finish

Step 3: If SAFE, grant resources. If UNSAFE, delay
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Banker’s Algorithm for Avoiding Deadlock
[Avail] = [FreeResources] 
 Add all threads to UNFINISHED 
 do {
  done = true
  Foreach threads in UNFINISHED { 
   if ([Maxthreads]-[Allocthread] <= [Avail]) {
    remove thread from UNFINISHED
    [Avail] = [Avail] + [Allocthread]
    done = false
   }
  }
 } until(done)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

When Thread A acquires x:

Avail = [0,1]
For A: [1,1] – [1,0] <= [0,1]
Update Avail to = 1,1. 
Remove A from UNFINISHED
For B:
[1,1] – [0,0] <= [1,1]
Update Avail to = [1,1]. 
Remove B from UNFINISHED

Safe state!

When Thread B acquires y:

Avail = [0,0]
For A: [1,1] – [1,0] <= [0,0]
For B: [1,1] – [0,1] <= [0,0]

UNFINISHED not empty

Unsafe state! Must delay 
acquiring y!
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Summary
Deadlock => Starvation, Starvation does not imply 

deadlock

Four conditions for deadlocks
Mutual exclusion
Hold and wait
No preemption
Circular wait

Techniques for addressing deadlock: prevention, recovery, 
avoidance, or denial

Banker’s algorithm for avoiding deadlock
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