CS162 Operating Systems and Systems Programming Lecture 16

Memory 4: Demand Paging Policies

March 15th, 2022 Prof. Anthony Joseph and John Kubiatowicz http://cs162.eecs.Berkeley.edu

What TLB Organization Makes Sense?

- Needs to be really fast
 - Critical path of memory access
 - » In simplest view: before the cache
 - » Thus, this adds to access time (reducing cache speed)
 - Seems to argue for Direct Mapped or Low Associativity
- However, needs to have very few conflicts!
 - With TLB, the Miss Time extremely high! (PT traversal)
 - Cost of Conflict (Miss Time) is high
 - Hit Time dictated by clock cycle
- Thrashing: continuous conflicts between accesses
 - What if use low order bits of virtual page number as index into TLB?
 - » First page of code, data, stack may map to same entry
 - » Need 3-way associativity at least?
 - What if use high order bits as index?
 - » TLB mostly unused for small programs

Joseph & Kubiatowicz CS162 © UCB Spring 2022

TLB organization: include protection

• How big does TLB actually have to be?

-Usually small: 128-512 entries (larger now)

- Not very big, can support higher associativity
- Small TLBs usually organized as fully-associative cache
 - Lookup is by Virtual Address
 - Returns Physical Address + other info
- What happens when fully-associative is too slow?
 - -Put a small (4-16 entry) direct-mapped cache in front
 - Called a "TLB Slice"
- Example for MIPS R3000:

Virtual Address	Physical Address	Dirty	Ref	Valid	Access	ASID
0~5400	0,20003	V	NI	V		24
UXFAUU	0x0003	T	IN	T	FK/VV	34
0x0040	0x0010	Ν	Y	Y	R	0
0x0041	0x0011	Ν	Υ	Y	R	0

Example: R3000 pipeline includes TLB "stages"

MIPS R3000 Pipeline

Inst Fetch		Dcd/ Reg		ALU / E.A		Memory	Write Reg		
TLB	I-Cac	che RF		Operation			WB		
				E.A.	TLB	D-Cache			

TLB

64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

Reducing translation time for physically-indexed caches

- As described, TLB lookup is in serial with cache lookup
 - Consequently, speed of TLB can impact speed of access to cache

Virtual Address 10[.] offset V page no. TLB Lookup Access PA Rights P page no. offset **Physical Address**

- Machines with TLBs go one step further: overlap TLB lookup with cache access
 - Works because offset available early
 - Offset in virtual address exactly covers the "cache index" and "byte select"
 - Thus can select the cached byte(s) in parallel to perform address translation

virtual address:	Virtual Page #	Virtual Page # Offset			
physical address:	tag / page #	index	byte		

Overlapping TLB & Cache Access

• Here is how this might work with a 4K cache:

- What if cache size is increased to 8KB?
 - Overlap not complete
 - Need to do something else. See CS152/252
- Another option: Virtual Caches would make this faster
 - Tags in cache are virtual addresses
 - Translation only happens on cache misses

Current Intel x86 (Skylake, Cascade Lake)

Current Example: Memory Hierarchy

- Caches (all 64 B line size)
 - L1 I-Cache: 32 <u>KiB</u>/core, 8-way set assoc.
 - L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy
 - L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles latency
 - L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive victim cache, Write-back policy, 50-70 cycles latency
- TLB
 - L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
 - » 8 entries per thread; fully associative, for 2 MiB / 4 MiB page
 - L1 DTLB 64 entries; 4-way set associative for 4 KB pages
 - » 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
 - » 4 entries; 4-way associative, 1G page translations:
 - L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
 - » 16 entries; 4-way set associative, 1 GiB page translations:

What happens on a Context Switch?

- Need to do something, since TLBs map virtual addresses to physical addresses

 Address Space just changed, so TLB entries no longer valid!
- Options?
 - Invalidate TLB: simple but might be expensive
 - » What if switching frequently between processes?
 - Include ProcessID in TLB
 - » This is an architectural solution: needs hardware
- What if translation tables change?
 - For example, to move page from memory to disk or vice versa...
 - Must invalidate TLB entry!
 - » Otherwise, might think that page is still in memory!
 - Called "TLB Consistency"
- Aside: with Virtually-Indexed cache, need to flush cache!
 - Rember, everyone has their own version of the address "0"!

Putting Everything Together: Address Translation

Putting Everything Together: TLB

Joseph & Kubiatowicz CS162 © UCB Spring 2022

Putting Everything Together: Cache

Lec 16.12

3/15/22

Page Fault

- The Virtual-to-Physical Translation fails
 - PTE marked invalid, Priv. Level Violation, Access violation, or does not exist
 - Causes an Fault / Trap
 - » Not an interrupt because synchronous to instruction execution
 - May occur on instruction fetch or data access
 - Protection violations typically terminate the instruction
- Other Page Faults engage operating system to fix the situation and retry the instruction
 - Allocate an additional stack page, or
 - Make the page accessible Copy on Write,
 - Bring page in from secondary storage to memory demand paging
- Fundamental inversion of the hardware / software boundary

Demand Paging

- Modern programs require a lot of physical memory — Memory per system growing faster than 25%-30%/year
- But they don't use all their memory all of the time

 90-10 rule: programs spend 90% of their time in 10% of their code
 Wasteful to require all of user's code to be in memory
- Solution: use main memory as "cache" for disk

Page Fault ⇒ Demand Paging

Recall 61C: Average Memory Access Time

• Used to compute access time probabilistically:

AMAT = Hit $Rate_{L1} \times Hit Time_{L1} + Miss Rate_{L1} \times Miss Time_{L1}$ Hit $Rate_{L1} + Miss Rate_{L1} = 1$

```
Hit Time<sub>L1</sub> = Time to get value from L1 cache.

Miss Time_{L1} = Hit Time_{L1} + Miss Penalty_{L1}

Miss Penalty_{L1} = AVG Time to get value from lower level (DRAM)

So, AMAT = Hit Time<sub>L1</sub> + Miss Rate_{L1} x Miss Penalty_{L1}
```

What about more levels of hierarchy?
 AMAT = Hit Time_{L1} + Miss Rate_{L1} x Miss Penalty_{L1}
 Miss Penalty_{L1} = AVG time to get value from lower level (L2)

 = Hit Time_{L2} + Miss Rate_{L2} x Miss Penalty_{L2}
 Miss Penalty_{L2} = Average Time to fetch from below L2 (DRAM)

```
AMAT = Hit Time_{L1} + 
\underline{Miss Rate_{L1}} \times (Hit Time_{L2} + \underline{Miss Rate_{L2}} \times Miss Penalty_{L2})
```

• And so on ... (can do this recursively for more levels!)

Management & Access to the Memory Hierarchy

Page Fault ⇒ Demand Paging

Demand Paging as Caching, ...

- What "block size"? 1 page (e.g, 4 KB)
- What "organization" ie. direct-mapped, set-assoc., fully-associative?
 - Fully associative since arbitrary virtual \rightarrow physical mapping
- How do we locate a page?
 - First check TLB, then page-table traversal
- What is page replacement policy? (i.e. LRU, Random...)
 - This requires more explanation... (kinda LRU)
- What happens on a miss?
 - Go to lower level to fill miss (i.e. disk)
- What happens on a write? (write-through, write back)
 - Definitely write-back need dirty bit!

Illusion of Infinite Memory

- Disk is larger than physical memory \Rightarrow
 - In-use virtual memory can be bigger than physical memory
 - Combined memory of running processes much larger than physical memory
 - » More programs fit into memory, allowing more concurrency
- Principle: Transparent Level of Indirection (page table)
 - Supports flexible placement of physical data
 - » Data could be on disk or somewhere across network
 - Variable location of data transparent to user program
 - » Performance issue, not correctness issue

Review: What is in a PTE?

- What is in a Page Table Entry (or PTE)?
 - Pointer to next-level page table or to actual page
 - Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
 - 2-level page tabler (10, 10, 12-bit offset)
 - Intermediate page tables called "Directories"

Bottom 22 bits of virtual address serve as offset

Demand Paging Mechanisms

- PTE makes demand paging implementatable
 - Valid \Rightarrow Page in memory, PTE points at physical page
 - Not Valid \Rightarrow Page not in memory; use info in PTE to find it on disk when necessary
- Suppose user references page with invalid PTE?
 - Memory Management Unit (MMU) traps to OS
 - » Resulting trap is a "Page Fault"
 - What does OS do on a Page Fault?:
 - » Choose an old page to replace
 - \gg If old page modified ("D=1"), write contents back to disk
 - » Change its PTE and any cached TLB to be invalid
 - » Load new page into memory from disk
 - » Update page table entry, invalidate TLB for new entry
 - » Continue thread from original faulting location
 - TLB for new page will be loaded when thread continued!
 - While pulling pages off disk for one process, OS runs another process from ready queue
 - » Suspended process sits on wait queue

Many Uses of Virtual Memory and "Demand Paging" ...

- Extend the stack
 - Allocate a page and zero it
- Extend the heap (sbrk of old, today mmap)
- Process Fork
 - Create a copy of the page table
 - Entries refer to parent pages NO-WRITE
 - Shared read-only pages remain shared
 - Copy page on write
- Exec
 - Only bring in parts of the binary in active use
 - Do this on demand
- MMAP to explicitly share region (or to access a file as RAM)

Classic: Loading an executable into memory

- .exe
 - lives on disk in the file system
 - contains contents of code & data segments, relocation entries and symbols
 - OS loads it into memory, initializes registers (and initial stack pointer)
 - program sets up stack and heap upon initialization:
 crt0 (C runtime init)

Joseph & Kubiatowicz CS162 © UCB Spring 2022

Create Virtual Address Space of the Process

- Utilized pages in the VAS are backed by a page block on disk
 - Called the backing store or swap file
 - Typically in an optimized block store, but can think of it like a file

Create Virtual Address Space of the Process

- All the utilized regions are backed on disk
 - swapped into and out of memory as needed
- For every process

Create Virtual Address Space of the Process

- User Page table maps entire VAS
 - Resident pages to the frame in memory they occupy
 - The portion of it that the HW needs to access must be resident in memory

Provide Backing Store for VAS

- User Page table maps entire VAS
- Resident pages mapped to memory frames
- For all other pages, OS must record where to find them on disk

What Data Structure Maps Non-Resident Pages to Disk?

- FindBlock(PID, page#) → disk_block
 - Some OSs utilize spare space in PTE for paged blocks
 - Like the PT, but purely software
- Where to store it?
 - In memory can be compact representation if swap storage is contiguous on disk
 - Could use hash table (like Inverted PT)
- Usually want backing store for resident pages too
- May map code segment directly to on-disk image
 Saves a copy of code to swap file
- May share code segment with multiple instances of the program

Provide Backing Store for VAS

On page Fault ...

Lec 16.35

On page Fault ... find & start load

Lec 16.36

On page Fault ... schedule other P or T

On page Fault ... update PTE

Eventually reschedule faulting thread

Lec 16.39

Summary: Steps in Handling a Page Fault

Some questions we need to answer!

- During a page fault, where does the OS get a free frame?
 - Keeps a free list
 - Unix runs a "reaper" if memory gets too full
 - » Schedule dirty pages to be written back on disk
 - » Zero (clean) pages which haven't been accessed in a while
 - As a last resort, evict a dirty page first
- How can we organize these mechanisms?
 - Work on the replacement policy
- How many page frames/process?
 - Like thread scheduling, need to "schedule" memory resources:
 - » Utilization? fairness? priority?
 - Allocation of disk paging bandwidth

 As a program executes it transitions through a sequence of "working sets" consisting of varying sized subsets of the address space

Cache Behavior under WS model

- Amortized by fraction of time the Working Set is active
- Transitions from one WS to the next
- Capacity, Conflict, Compulsory misses
- Applicable to memory caches and pages. Others ?

Another model of Locality: Zipf

P access(rank) = 1/rank

- Likelihood of accessing item of rank r is a $1/r^a$
- Although rare to access items below the top few, there are so many that it yields a "heavy tailed" distribution
- Substantial value from even a tiny cache
- Substantial misses from even a very large cache

Demand Paging Cost Model

- Since Demand Paging like caching, can compute average access time! ("Effective Access Time")
 - EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
 - EAT = Hit Time + Miss Rate × Miss Penalty
- Example:
 - Memory access time = 200 nanoseconds
 - Average page-fault service time = 8 milliseconds
 - Suppose p = Probability of miss, 1-p = Probably of hit
 - Then, we can compute EAT as follows:
 - EAT = 200ns + p x 8 ms
 - = 200ns + p × 8,000,000ns
- If one access out of 1,000 causes a page fault, then EAT = 8.2 μ s:
 - This is a slowdown by a factor of 40!
- What if want slowdown by less than 10%?
 - − EAT < 200ns x 1.1 \Rightarrow p < 2.5 x 10⁻⁶
 - This is about 1 page fault in 400,000!

What Factors Lead to Misses in Page Cache?

- Compulsory Misses:
 - Pages that have never been paged into memory before
 - How might we remove these misses?
 - » Prefetching: loading them into memory before needed
 - » Need to predict future somehow! More later
- Capacity Misses:
 - Not enough memory. Must somehow increase available memory size.
 - Can we do this?
 - » One option: Increase amount of DRAM (not quick fix!)
 - » Another option: If multiple processes in memory: adjust percentage of memory allocated to each one!
- Conflict Misses:
 - Technically, conflict misses don't exist in virtual memory, since it is a "fully-associative" cache
- Policy Misses:
 - Caused when pages were in memory, but kicked out prematurely because of the replacement policy
 - How to fix? Better replacement policy

Page Replacement Policies

- Why do we care about Replacement Policy?
 - Replacement is an issue with any cache
 - Particularly important with pages
 - » The cost of being wrong is high: must go to disk
 - » Must keep important pages in memory, not toss them out
- FIFO (First In, First Out)
 - Throw out oldest page. Be fair let every page live in memory for same amount of time.
 - Bad throws out heavily used pages instead of infrequently used
- RANDOM:
 - Pick random page for every replacement
 - Typical solution for TLB's. Simple hardware
 - Pretty unpredictable makes it hard to make real-time guarantees
- MIN (Minimum):
 - Replace page that won't be used for the longest time
 - Great (provably optimal), but can't really know future...
 - But past is a good predictor of the future ...

Replacement Policies (Con't)

- LRU (Least Recently Used):
 - Replace page that hasn't been used for the longest time
 - Programs have locality, so if something not used for a while, unlikely to be used in the near future.
 - Seems like LRU should be a good approximation to MIN.
- How to implement LRU? Use a list:

- On each use, remove page from list and place at head
- LRU page is at tail
- Problems with this scheme for paging?
 - Need to know immediately when page used so that can change position in list...
 - Many instructions for each hardware access
- In practice, people approximate LRU (more later)

Example: FIFO (strawman)

- Suppose we have 3 page frames, 4 virtual pages, and following reference stream:
 - A B C A B D A D B C B
- Consider FIFO Page replacement:

Ref:	А	В	С	A	В	D	A	D	В	С	В
Page:											
1	А					D				С	
2		В					А				
3			С						В		

- FIFO: 7 faults
- When referencing D, replacing A is bad choice, since need A again right away

- Suppose we have the same reference stream:
 A B C A B D A D B C B
- Consider MIN Page replacement:

• MIN: 5 faults

- Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?

- Same decisions as MIN here, but won't always be true!

Is LRU guaranteed to perform well?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

Ref:	А	В	С	D	A	В	С	D	A	В	С	D
Page:												
1	А			D			С			В		
2		В			А			D			С	
3			С			В			A			D

– Every reference is a page fault!

• Fairly contrived example of working set of N+1 on N frames

When will LRU perform badly?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

Ref: Page:	A	В	С	D	A	В	С	D	A	В	С	D
1	А			D			С			В		
2		В			А			D			С	
3			С			В			А			D

- Every reference is a page fault!
- MIN Does much better:

Ref:	А	В	С	D	А	В	С	D	А	В	С	D
Page:												
1	А									В		
2		В					С					
3			С	D								

Graph of Page Faults Versus The Number of Frames

- One desirable property: When you add memory the miss rate drops (stack property)
 - Does this always happen?
 - Seems like it should, right?
- No: Bélády's anomaly
 - Certain replacement algorithms (FIFO) don't have this obvious property!

Adding Memory Doesn't Always Help Fault Rate

- Does adding memory reduce number of page faults?
 - Yes for LRU and MIŃ
 - Not necessarily for FIFO! (Called Bélády's anomaly)

- After adding memory:

 - With FIFO, contents can be completely different In contrast, with LRU or MIN, contents of memory with X pages are a subset of contents with X+1 Page Joseph & Kubiatowicz CS162 © UCB Spring 2022

Approximating LRU: Clock Algorithm

Set of all pages

in Memory

Single Clock Hand:

Advances only on page fault! Check for pages not used recently Mark pages as not used recently

Clock Algorithm: Arrange physical pages in circle with single clock hand

- Approximate LRU (approximation to approximation to MIN)
 - Replace an old page, not the oldest page

• Details:

- Hardware "use" bit per physical page (called "accessed" in Intel architecture):
 - » Hardware sets use bit on each reference
 - » If use bit isn't set, means not referenced in a long time
 - » Some hardware sets use bit in the TLB; must be copied back to PTE when TLB entry gets replaced
- On page fault:
 - » Advance clock hand (not real time)
 - » Check use bit: $1 \rightarrow$ used recently; clear and leave alone
 - $0 \rightarrow$ selected candidate for replacement

Clock Algorithm: More details

- Will always find a page or loop forever?
 - Even if all use bits set, will eventually loop all the way around \Rightarrow FIFO
- What if hand moving slowly?
 - Good sign or bad sign?
 - » Not many page faults
- What if hand is moving quickly?
 - Lots of page faults and/or lots of reference bits set
- One way to view clock algorithm:
 - Crude partitioning of pages into two groups: young and old
 - Why not partition into more than 2 groups?

Nth Chance version of Clock Algorithm

- Nth chance algorithm: Give page N chances
 - OS keeps counter per page: # sweeps
 - On page fault, OS checks use bit:
 - » 1 \rightarrow clear use and also clear counter (used in last sweep)
 - » 0 \rightarrow increment counter; if count=N, replace page
 - Means that clock hand has to sweep by N times without page being used before page is replaced
- How do we pick N?
 - Why pick large N? Better approximation to LRU
 - » If N ~ 1K, really good approximation
 - Why pick small N? More efficient
 - » Otherwise might have to look a long way to find free page
- What about "modified" (or "dirty") pages?
 - Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before replacing?
 - Common approach:
 - » Clean pages, use N=1
 - \gg Dirty pages, use N=2 (and write back to disk when N=1)

Recall: Meaning of PTE bits

• Which bits of a PTE entry are useful to us for the Clock Algorithm? Remember Intel PTE:

- The "Present" bit (called "Valid" elsewhere):
 - » P==0: Page is invalid and a reference will cause page fault
 - \gg P==1: Page frame number is valid and MMU is allowed to proceed with translation
- The "Writable" bit (could have opposite sense and be called "Read-only"):
 - \gg W==0: Page is read-only and cannot be written.
 - » W==1: Page can be written
- The "Accessed" bit (called "Use" elsewhere):
 - » A==0: Page has not been accessed (or used) since last time software set $A \rightarrow 0$
 - » A==1: Page has been accessed (or used) since last time software set $A \rightarrow 0$
- The "Dirty" bit (called "Modified" elsewhere):
 - » D==0: Page has not been modified (written) since PTE was loaded
 - » D==1: Page has changed since PTE was loaded

Clock Algorithms Variations

- Do we really need hardware-supported "modified" bit?
 - No. Can emulate it using read-only bit
 - » Need software DB of which pages are allowed to be written (needed this anyway)
 - » We will tell MMU that pages have more restricted permissions than the actually do to force page faults (and allow us notice when page is written)
 - Algorithm (Clock-Emulated-M):
 - » Initially, mark all pages as read-only (W \rightarrow 0), even writable data pages. Further, clear all software versions of the "modified" bit \rightarrow 0 (page not dirty)
 - » Writes will cause a page fault. Assuming write is allowed, OS sets software "modified" bit $\rightarrow 1$, and marks page as writable (W $\rightarrow 1$).
 - » Whenever page written back to disk, clear "modified" bit \rightarrow 0, mark read-only

Clock Algorithms Variations (continued)

- Do we really need a hardware-supported "use" bit?
 - No. Can emulate it similar to above (e.g. for read operation)
 - » Kernel keeps a "use" bit and "modified" bit for each page
 - Algorithm (Clock-Emulated-Use-and-M):
 - » Mark all pages as invalid, even if in memory. Clear emulated "use" bits \rightarrow 0 and "modified" bits \rightarrow 0 for all pages (not used, not dirty)
 - » Read or write to invalid page traps to OS to tell use page has been used
 - » OS sets "use" bit \rightarrow 1 in software to indicate that page has been "used". Further:

 - 1) If read, mark page as read-only, $W \rightarrow 0$ (will catch future writes) 2) If write (and write allowed), set "modified" bit \rightarrow 1, mark page as writable ($W \rightarrow 1$)
 - » When clock hand passes, reset emulated "use" bit \rightarrow 0 and mark page as invalid again
 - » Note that "modified" bit left alone until page written back to disk
- Remember, however, clock is just an approximation of LRU!
 - Can we do a better approximation, given that we have to take page faults on some reads and writes to collect use information?
 - Need to identify an old page, not oldest page!
 - Answer: second chance list

3/15/22

Second-Chance List Algorithm (VAX/VMS)

- Split memory in two: Active list (RW), SC list (Invalid)
- Access pages in Active list at full speed
- Otherwise, Page Fault
 - Always move overflow page from end of Active list to front of Second-chance list (SC) and mark invalid
 - Desired Page On SC List: move to front of Active list, mark RW
 - Not on SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC list

Second-Chance List Algorithm (continued)

- How many pages for second chance list?
 - If 0 \Rightarrow FIFO
 - If all \Rightarrow LRU, but page fault on every page reference
- Pick intermediate value. Result is:
 - Pro: Few disk accesses (page only goes to disk if unused for a long time)
 - Con: Increased overhead trapping to OS (software / hardware tradeoff)
- With page translation, we can adapt to any kind of access the program makes
 - Later, we will show how to use page translation / protection to share memory between threads on widely separated machines
- History: The VAX architecture did not include a "use" bit. Why did that omission happen???
 - Strecker (architect) asked OS people, they said they didn't need it, so didn't implement it
 - He later got blamed, but VAX did OK anyway

Summary

- Replacement policies
 - FIFO: Place pages on queue, replace page at end
 - MIN: Replace page that will be used farthest in future
 - LRU: Replace page used farthest in past
- Clock Algorithm: Approximation to LRU
 - Arrange all pages in circular list
 - Sweep through them, marking as not "in use"
 - If page not "in use" for one pass, than can replace
- Nth-chance clock algorithm: Another approximate LRU
 - Give pages multiple passes of clock hand before replacing
- Second-Chance List algorithm: Yet another approximate LRU
 - Divide pages into two groups, one of which is truly LRU and managed on page faults.
- Working Set:
 - Set of pages touched by a process recently
- Thrashing: a process is busy swapping pages in and out
 - Process will thrash if working set doesn't fit in memory
 - Need to swap out a process