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What TLB Organization Makes Sense?

• Needs to be really fast
– Critical path of memory access 

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high! (PT traversal)
– Cost of Conflict (Miss Time) is high 
– Hit Time – dictated by clock cycle

• Thrashing: continuous conflicts between accesses
– What if use low order bits of virtual page number as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB
Cache

[Physically 
indexed]

Memory
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TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries (larger now)
– Not very big, can support higher associativity

• Small TLBs usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
 0x0040 0x0010 N Y Y R 0
 0x0041 0x0011 N Y Y R 0

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID
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Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU  /  E.A Memory Write Reg
TLB I-Cache          RF        Operation                                WB

E.A.    TLB        D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip,  fully associative, software TLB fault handler
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• As described, TLB lookup is in serial with 
cache lookup

– Consequently, speed of TLB can impact
speed of access to cache

• Machines with TLBs go one step further:
overlap TLB lookup with cache access

– Works because offset available early
– Offset in virtual address exactly covers the “cache index” and “byte select”
– Thus can select the cached byte(s) in parallel to perform address translation  

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

OffsetVirtual Page #

indextag / page # byte

virtual address:

physical address: 

Reducing translation time for physically-indexed caches
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• Here is how this might work with a 4K cache: 

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else.  See CS152/252 

• Another option: Virtual Caches would make this faster
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2

00
4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access
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Current Intel x86 (Skylake, Cascade Lake)
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Current Example: Memory Hierarchy

• Caches (all 64 B line size)
– L1 I-Cache: 32 KiB/core, 8-way set assoc.
– L1 D Cache: 32 KiB/core, 8-way set assoc.,  4-5 cycles load-to-use, Write-back policy
– L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles latency
– L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive victim 

cache, Write-back policy, 50-70 cycles latency
• TLB

– L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page 

– L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

– L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:

https://en.wikichip.org/wiki/KiB
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What happens on a Context Switch?

• Need to do something, since TLBs map virtual addresses to physical addresses
– Address Space just changed, so TLB entries no longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware

• What if translation tables change?
– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”

• Aside: with Virtually-Indexed cache, need to flush cache!
– Rember, everyone has their own version of the address “0”!
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Putting Everything Together: Address Translation

Virtual Address:

OffsetVirtual
P2 index

Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:

Offset

Physical Address:
Physical
Page #
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

Offset

Virtual Address:

OffsetVirtual
P2 index

Virtual
P1 index

Physical 
Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:

OffsetVirtual
P2 index

Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:

…

tag: block:
cache:

index bytetag

Physical
Page #
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Page Fault
• The Virtual-to-Physical Translation fails

– PTE marked invalid, Priv. Level Violation, Access violation, or does not exist
– Causes an Fault / Trap

» Not an interrupt because synchronous to instruction execution

– May occur on instruction fetch or data access
– Protection violations typically terminate the instruction

• Other Page Faults engage operating system to fix the situation and retry the instruction
– Allocate an additional stack page, or
– Make the page accessible - Copy on Write, 
– Bring page in from secondary storage to memory – demand paging

• Fundamental inversion of the hardware / software boundary
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Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk

O
n-Chip

Cache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

pagingcaching
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Page Fault ⇒ Demand Paging

virtual address

MMU
PT

instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset
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• Used to compute access time probabilistically:
  AMAT = Hit RateL1 x Hit TimeL1 + Miss RateL1 x Miss TimeL1

Hit RateL1 + Miss RateL1 = 1
Hit TimeL1 = Time to get value from L1 cache.
Miss TimeL1 = Hit TimeL1 + Miss PenaltyL1
Miss PenaltyL1 = AVG Time to get value from lower level (DRAM)
So, AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

• What about more levels of hierarchy?
 AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1
 Miss PenaltyL1 = AVG time to get value from lower level (L2)

   = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2
Miss PenaltyL2 = Average Time to fetch from below L2 (DRAM)

AMAT = Hit TimeL1 + 
    Miss RateL1 x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2)

• And so on … (can do this recursively for more levels!)

Recall 61C: Average Memory Access Time

Pr
oc

L1
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L2
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D
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L1
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Management & Access to the Memory Hierarchy

Secondary
 Storage 

(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000 
   (10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs
0.3 3

10kBs 100kBs

Secondary
 Storage 

(SSD)

100,000
(0.1 ms)
100GBs

Managed in 
Hardware

Managed in Software - OS

PT

PT
PTPT

TLB

TLB

Accessed in Hardware

?

Presenter Notes
Presentation Notes
The design goal is to present the user with as much memory as is available in the cheapest technology (points to the disk).
While by taking advantage of the principle of locality, we like to provide the user an average access speed that is very close to the speed that is offered by the fastest technology.
(We will go over this slide in details in the next lecture on caches).

+1 = 16 min. (X:56)
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Page Fault ⇒ Demand Paging

virtual address

MMU
PT

instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset
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Demand Paging as Caching, …

• What  “block size”? - 1 page (e.g, 4 KB)

• What “organization” ie. direct-mapped, set-assoc., fully-associative?
– Fully associative since arbitrary virtual → physical mapping

• How do we locate a page?
– First check TLB, then page-table traversal

• What is page replacement policy? (i.e. LRU, Random…)
– This requires more explanation… (kinda LRU)

• What happens on a miss?
– Go to lower level to fill miss (i.e. disk)

• What happens on a write? (write-through, write back)
– Definitely write-back – need dirty bit!
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Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical memory

» More programs fit into memory, allowing more concurrency 
• Principle: Transparent Level of Indirection (page table) 

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory
4 GB
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Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– 2-level page tabler (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

  P: Present (same as “valid” bit in other architectures) 
  W: Writeable
  U: User accessible
  PWT: Page write transparent: external cache write-through
  PCD: Page cache disabled (page cannot be cached)
  A: Accessed: page has been accessed recently
  D: Dirty (PTE only): page has been modified recently
  PS: Page Size: PS=1⇒4MB page (directory only).

  Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS)

0

PS D A

PC
D

PW
T U W P

01234567811-931-12
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• PTE makes demand paging implementatable
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when 

necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace 
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another process 

from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms
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• Extend the stack
– Allocate a page and zero it

• Extend the heap (sbrk of old, today mmap)

• Process Fork
– Create a copy of the page table
– Entries refer to parent pages – NO-WRITE
– Shared read-only pages remain shared
– Copy page on write

• Exec 
– Only bring in parts of the binary in active use
– Do this on demand

• MMAP to explicitly share region (or to access a file as RAM)

Many Uses of Virtual Memory and “Demand Paging” …
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Classic: Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries and 

symbols
– OS loads it into memory, initializes registers (and initial stack pointer)
– program sets up stack and heap upon initialization: 

 crt0 (C runtime init)

disk (huge) memory

code

data

info

exe
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Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk
– Called the backing store or swap file
– Typically in an optimized block store, but can think of it like a file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel 
code & 
data

user page
frames

user 
pagetable
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Create Virtual Address Space of the Process

• User Page table maps entire VAS

• All the utilized regions are backed on disk
– swapped into and out of memory as needed

• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel 
code & 
data

user page
frames

user 
pagetable

code

data

heap

stack
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Create Virtual Address Space of the Process

• User Page table maps entire VAS
– Resident pages to the frame in memory they occupy
– The portion of it that the HW needs to access must be resident in 

memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS 
[per process]

kernel 
code & 
data

user page
frames

user 
pagetable

code

data

heap

stack

PT
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Provide Backing Store for VAS

• User Page table maps entire VAS

• Resident pages mapped to memory frames

• For all other pages, OS must record where to find them on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel 
code & 
data

user page
frames

user 
pagetable

code

data

heap

stack

VAS 
[per process]
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What Data Structure Maps 
Non-Resident Pages to Disk?

• FindBlock(PID, page#) → disk_block
– Some OSs utilize spare space in PTE for paged blocks
– Like the PT, but purely software

• Where to store it?
– In memory – can be compact representation if swap storage is 

contiguous on disk
– Could use hash table (like Inverted PT)

• Usually want backing store for resident pages too

• May map code segment directly to on-disk image
– Saves a copy of code to swap file

• May share code segment with multiple instances of the program
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Provide Backing Store for VAS

disk (huge, TB)
memory

kernel 
code & 
data

user 
page
frames

user 
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data
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On page Fault …

disk (huge, TB)
memory

kernel 
code 
& data

user 
page
frames

user 
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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On page Fault … find & start load

disk (huge, TB)
memory

kernel 
code & 
data

user 
page
frames

user 
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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On page Fault … schedule other P or T

disk (huge, TB)
memory

kernel 
code & 
data

user 
page
frames

user 
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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On page Fault … update PTE

disk (huge, TB)
memory

kernel 
code & 
data

user 
page
frames

user 
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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Eventually reschedule faulting thread

disk (huge, TB)
memory

kernel 
code & 
data

user 
page
frames

user 
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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Summary: Steps in Handling a Page Fault
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Some questions we need to answer!
• During a page fault, where does the OS get a free frame?

– Keeps a free list
– Unix runs a “reaper” if memory gets too full

» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

– As a last resort, evict a dirty page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory resources:

» Utilization?  fairness? priority?
– Allocation of disk paging bandwidth
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Working Set Model
• As a program executes it transitions through a sequence of 

“working sets” consisting of varying sized subsets of the address 
space

Time

Ad
dr

es
s
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Cache Behavior under WS model

• Amortized by fraction of time the Working Set is active

• Transitions from one WS to the next

• Capacity, Conflict, Compulsory misses

• Applicable to memory caches and pages.  Others ?

Hi
t R

at
e

Cache Size

new working set fits

0

1
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Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α 1/ra

• Although rare to access items below the top few, there are so many 
that it yields a “heavy tailed” distribution

• Substantial value from even a tiny cache

• Substantial misses from even a very large cache
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Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time! (“Effective 

Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

  EAT = 200ns + p x 8 ms
         = 200ns + p x 8,000,000ns
• If one access out of 1,000 causes a page fault, then EAT = 8.2 μs:

– This is a slowdown by a factor of 40!
• What if want slowdown by less than 10%?

– EAT < 200ns x 1.1 ⇒ p < 2.5 x 10-6

– This is about 1 page fault in 400,000!
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What Factors Lead to Misses in Page Cache?
• Compulsory Misses: 

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!  More later

• Capacity Misses:
– Not enough memory. Must somehow increase available memory size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option:  If multiple processes in memory: adjust percentage of memory allocated to 

each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, since it is a “fully-associative” cache
• Policy Misses:

– Caused when pages were in memory, but kicked out prematurely because of the 
replacement policy

– How to fix? Better replacement policy
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Page Replacement Policies
• Why do we care about Replacement Policy? 

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page.  Be fair – let every page live in memory for same amount of time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s.  Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum): 
– Replace page that won’t be used for the longest time 
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …
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Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while, 

unlikely to be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list:

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when page used so that can change position in list… 
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)
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• Suppose we have 3 page frames, 4 virtual pages, and following reference 
stream: 

– A B C A B D A D B C B
• Consider FIFO Page replacement:

• FIFO: 7 faults
• When referencing D, replacing A is bad choice, since need A again right away

Example: FIFO (strawman)

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:
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• Suppose we have the same reference stream: 
– A B C A B D A D B C B

• Consider MIN Page replacement:

• MIN: 5 faults 
– Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN / LRU

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:
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• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• Fairly contrived example of working set of N+1 on N frames

D

Is LRU guaranteed to perform well?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:



Lec 16.523/15/22 Joseph & Kubiatowicz CS162 © UCB Spring 2022

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?
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• One desirable property: When you add memory the miss rate drops 
(stack property)

– Does this always happen?
– Seems like it should, right?

• No: Bélády’s anomaly 
– Certain replacement algorithms (FIFO) don’t have this obvious property!

Graph of Page Faults Versus The Number of Frames
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Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO!  (Called Bélády’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages are a subset 

of contents with X+1 Page
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Approximating LRU: Clock Algorithm

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to PTE when TLB entry gets replaced

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1→ used recently; clear and leave alone

 0→ selected candidate for replacement
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Clock Algorithm: More details

• Will always find a page or loop forever?
– Even if all use bits set, will eventually loop

all the way around ⇒ FIFO
• What if hand moving slowly?

– Good sign or bad sign?
» Not many page faults 
» or find page quickly

• What if hand is moving quickly?
– Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm: 
– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Set of all pages
in Memory

Single Clock Hand
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Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1 → clear use and also clear counter (used in last sweep)
» 0 → increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being used before page is 
replaced

• How do we pick N?
– Why pick large N? Better approximation to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about “modified” (or “dirty”) pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before 
replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)
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Recall: Meaning of PTE bits
• Which bits of a PTE entry are useful to us for the Clock Algorithm?  Remember Intel 

PTE:

– The “Present” bit (called “Valid” elsewhere): 
» P==0: Page is invalid and a reference will cause page fault
» P==1: Page frame number is valid and MMU is allowed to proceed with translation

– The “Writable” bit (could have opposite sense and be called “Read-only”):
» W==0: Page is read-only and cannot be written.  
» W==1: Page can be written

– The “Accessed” bit (called “Use” elsewhere):
» A==0: Page has not been accessed (or used) since last time software set A→0
» A==1: Page has been accessed (or used) since last time software set A→0

– The “Dirty” bit (called “Modified” elsewhere):
» D==0: Page has not been modified (written) since PTE was loaded
» D==1: Page has changed since PTE was loaded

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PC
D

PW
T U W P

01234567811-931-12

PTE:



Lec 16.593/15/22 Joseph & Kubiatowicz CS162 © UCB Spring 2022

Clock Algorithms Variations
• Do we really need hardware-supported “modified” bit?

– No.  Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)

» We will tell MMU that pages have more restricted permissions than the actually do to force 
page faults (and allow us notice when page is written)

– Algorithm (Clock-Emulated-M):
» Initially, mark all pages as read-only (W→0), even writable data pages.  

Further, clear all software versions of the “modified” bit → 0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software “modified” bit → 1, 
and marks page as writable (W→1).

» Whenever page written back to disk, clear “modified” bit → 0, mark read-only
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Clock Algorithms Variations (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page

– Algorithm (Clock-Emulated-Use-and-M):
» Mark all pages as invalid, even if in memory.  

Clear emulated “use” bits → 0 and “modified” bits → 0 for all pages (not used, not dirty)
» Read or write to invalid page traps to OS to tell use page has been used
» OS sets “use” bit → 1 in software to indicate that page has been “used”. 

Further:
 1) If read, mark page as read-only, W→0 (will catch future writes)
 2) If write (and write allowed), set “modified” bit → 1, mark page as writable (W→1)

» When clock hand passes, reset emulated “use” bit → 0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk 

• Remember, however, clock is just an approximation of LRU!
– Can we do a better approximation, given that we have to take page faults on some reads and 

writes to collect use information?
– Need to identify an old page, not oldest page!
– Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list (SC) and 
mark invalid

– Desired Page On SC List: move to front of Active list, mark RW
– Not on SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC 

list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

New
SC Victims
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Second-Chance List Algorithm (continued)
• How many pages for second chance list?

– If 0 ⇒ FIFO
– If all ⇒ LRU, but page fault on every page reference

• Pick intermediate value.  Result is:
– Pro: Few disk accesses (page only goes to disk if unused for a long time) 
– Con: Increased overhead trapping to OS (software / hardware tradeoff)

• With page translation, we can adapt to any kind of access the program makes
– Later, we will show how to use page translation / protection to share memory between 

threads on widely separated machines
• History: The VAX architecture did not include a “use” bit.

Why did that omission happen???
– Strecker (architect) asked OS people, they said they didn’t need it, so didn’t implement it
– He later got blamed, but VAX did OK anyway
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Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past 

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approximate LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approximate  LRU
– Divide pages into two groups, one of which is truly LRU and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process
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