
CS162
Operating Systems and
Systems Programming

Lecture 17

General I/O, Storage Devices

Lec 17.230/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Course Map

• Introduction

• OS Concepts

• Concurrency

• Scheduling

• Memory Management

• Devices and file systems

• Reliability, networking and cloud

Lec 17.330/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: Five Components of a Computer

Lec 17.430/3/21 Crooks & Joseph CS162 © UCB Spring 2021

CPU: You need to get out more!

Input/output is the mechanism through which the

computer communicates with the outside world

Lec 17.530/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access

• Character Devices: e.g. keyboards, mice, serial ports, some USB devices
– Single characters at a time
– Commands include get(), put()

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

Lec 17.630/3/21 Crooks & Joseph CS162 © UCB Spring 2021

IO Subsystem: Abstraction, abstraction, abstraction

Processor

Memory

OS Memory

Process 1 Process 2 Process 3

OS Hardware Virtualization

Virtual Machine Abstraction

IO Layer

IO Devices

Lec 17.730/3/21 Crooks & Joseph CS162 © UCB Spring 2021

IO Subsystem: Abstraction, abstraction, abstraction
• This code

FILE fd = fopen("/dev/something", "rw");
for (int i = 0; i < 10; i++) {

fprintf(fd, "Count %d\n", i);
}
close(fd);

– Why? Because code that controls devices (“device driver”) implements standard
interface

• We will try to get a flavor for what is involved in actually controlling devices in
rest of lecture

– Can only scratch surface!

Lec 17.830/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Requirements of I/O layer

• But… thousands of devices, each slightly different
» OS: How can we standardize the interfaces to these devices?

• Devices unreliable: media failures and transmission errors
» OS: How can we make them reliable???

• Devices unpredictable and/or slow
» OS: How can we manage them if we don’t know what they will do or how they will

perform?

Lec 17.930/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Simplified IO architecture

Follows a hierarchical structure
because of cost: the faster the
bus, the more expensive it is

Lec 17.1030/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Intel’s Z270 Chipset

Lec 17.1130/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Sky Lake I/O: PCH

• Platform Controller Hub

– Connected to processor with
proprietary bus

» Direct Media Interface

• Types of I/O on PCH:

– USB, Ethernet

– Thunderbolt 3

– Audio, BIOS support

– More PCI Express (lower speed
than on Processor)

– SATA (for Disks)Sky Lake
System Configuration

Lec 17.1230/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

Device rates vary over 12 orders
of magnitude!!!

Lec 17.1330/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Two questions

• What is a bus?

• How does the processor talk to the devices?

Lec 17.1430/3/21 Crooks & Joseph CS162 © UCB Spring 2021

What’s a bus?

• Common set of wires for communication among hardware devices plus protocols
for carrying out data transfer transactions

• Split into three parts: data bus, address bus, and control bus

• Protocol: initiator requests access, arbitration to grant, identification of recipient,
handshake to convey address, length, data

Lec 17.1530/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Why a Bus?

• Buses let us connect 𝑛𝑛 devices over a single set of wires, connections, and protocols

– 𝑂𝑂 𝑛𝑛2 relationships with 1 set of wires (!)

• Downside: Only one transaction at a time
– The rest must wait
– “Arbitration” aspect of bus protocol ensures the rest wait

Lec 17.1630/3/21 Crooks & Joseph CS162 © UCB Spring 2021

PCI Bus Evolution

• PCI started life out
as a parallel bus

• But a parallel bus has many limitations
– Multiplexing address/data for many requests
– Slowest devices must be able to tell what’s happening (e.g., for arbitration)
– Bus speed is set to that of the slowest device

Lec 17.1730/3/21 Crooks & Joseph CS162 © UCB Spring 2021

PCI Express “Bus”

• No longer a parallel bus

• Really a collection of fast serial channels or “lanes”

• Devices can use as many as they need to achieve a desired bandwidth

• Slow devices don’t have to share with fast ones

• One of the successes of device abstraction in Linux was the ability to migrate from
PCI to PCI Express

– The physical interconnect changed completely, but the old API still worked

Lec 17.1830/3/21 Crooks & Joseph CS162 © UCB Spring 2021

How does the processor talk to devices?

• Remember, it’s all about abstractions!

It’s a file!

(What the user sees)

Interface
(What the OS sees)

Internals
(What is needed to implement the

abstraction)

Hardware interface device
presents to OS

Hardware interface device
presents to OS

Microcontroller Memory Other chips

Device Controller

Lec 17.1930/3/21 Crooks & Joseph CS162 © UCB Spring 2021

How does the processor talk to devices?

Interface
(What the OS sees)

Registers

Status Command Data

Port-Mapped I/O:
Privileged in/out instructions

Example from the Intel architecture: out 0x21,AL

Memory-mapped I/O: load/store instructions

Registers/memory appear in physical address space
I/O accomplished with load and store instructions

Lec 17.2030/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Port-Mapped I/O in Pintos Speaker Driver
Pintos: threads/io.hPintos: devices/speaker.c

Lec 17.2130/3/21 Crooks & Joseph CS162 © UCB Spring 2021

A simple protocol

Protocol does a lot of polling!

How can we lower this overhead?

CPU is responsible for moving data

Lec 17.2230/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Polling vs Interrupt-driven IO

• Use hardware interrupts:
– Allows CPU to process another task. Will get notified when task is done
– Interrupt handler will read data & error code

• Is it always better to use interrupts?

Lec 17.2330/3/21 Crooks & Joseph CS162 © UCB Spring 2021

From programmed IO to direct memory access

• With programmed IO (simple protocol):
– CPU issues read request
– Device interrupts CPU with data
– CPU writes data to memory
– Pros: simple hardware. Cons: Poor CPU is always busy!

• With direct-memory-access (DMA):
– CPU sets up DMA request

» Gives controller access to memory bus
– Device puts data on bus & RAM accepts it
– Device interrupts CPU when done

Device CPUCPU RAM

Device RAM

Lec 17.2430/3/21 Crooks & Joseph CS162 © UCB Spring 2021

DMA in more detail

1

2

3

Lec 17.2530/3/21 Crooks & Joseph CS162 © UCB Spring 2021

How can the OS handle one all devices

• How do we fit devices with specific interfaces into OS, which should remain general?

– Build a “device neutral” OS and hide details of devices from most of OS

• Abstraction to the rescue!

– Device Drivers encapsulate all specifics of device interaction

– Implement device neutral interfaces

Lec 17.2630/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with the

device hardware
– Supports a standard, internal interface
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

• Your body is 90% water, the OS is 70% device-drivers

Lec 17.2730/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Putting it together: Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 17.2830/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Conclusion
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices

• I/O Controllers: Hardware that controls actual device
– Processor Accesses through I/O instructions, load/store to special physical memory

• Notification mechanisms
– Interrupts
– Polling: Report results through status register that processor looks at periodically

• Device drivers interface to I/O devices
– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling

	CS162�Operating Systems and�Systems Programming�Lecture 17��General I/O, Storage Devices
	Course Map
	Recall: Five Components of a Computer
	CPU: You need to get out more!
	Want Standard Interfaces to Devices
	IO Subsystem: Abstraction, abstraction, abstraction
	IO Subsystem: Abstraction, abstraction, abstraction
	Requirements of I/O layer
	Simplified IO architecture
	Intel’s Z270 Chipset
	Sky Lake I/O: PCH
	Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)
	Two questions
	What’s a bus?
	Why a Bus?
	PCI Bus Evolution
	PCI Express “Bus”
	How does the processor talk to devices?
	How does the processor talk to devices?
	Port-Mapped I/O in Pintos Speaker Driver
	A simple protocol	
	Polling vs Interrupt-driven IO
	From programmed IO to direct memory access
	DMA in more detail
	How can the OS handle one all devices
	Device Drivers
	Putting it together: Life Cycle of An I/O Request
	Conclusion

