C5S162

Operating Systems and
ystems Programming
Lecture 19

File Systems

Professor Natacha Crooks

https://csl62.org/

Slides based on prior slide decks from David Culler, lon Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

Recall: HDD vs. SSD Comparison

Usually 10 DOD or 15 DO0 rpm SAS drives

Access times
ms i ms
| FEDw exhibt wirtually o access tme g -

S50 dedhver Al lnast Hn“hm w Fnrfumnm 4DDs reach up o
E“n“ D SE0w are ksl 15 hiress [l o HODs q{“] in/s
550y hove o Taiure . " HOO s g lure rale
rata of s han ﬂﬂllhill‘l‘ Maichsstan Eedannn
This mokes Z220= 4 - 10 1mes & Sabl
n.ﬁ B is mukes mes more redabie 2 Sy 5 7

S5D0s consume betwosn E“Hrﬂ' sawings HODs cansume betwoen
This meares that on A large serer ke aurs E 1 5
2 E 5 watts appromimately 100 walls ara ssued E watts

S50 nave a0 average B Avarsge B vl
110wl ol EH'I pm |s ataut
ioad il have an oxin 0%
1 Bq of £ power for adher pperalions T L)
e aneerage serce e o w18 10 requeal fime with
& U rdqLmal whilh nanning I“F'.w“m“t HOOs during hackip rsas up
1 backup remains below r.{l“ast timn‘)
2“ S50 Alow for much qnu.—-—- Eﬂu
m& fasinr dana afcess ms
S50 backups ke s Bll:lllll Rates HOD Dackups taka up e
B hours S50 allorwn for 3 - § limes Tastee 2" — 24 hours

Ecackupg for yowr dalg

HDD
Require seek + rotation
Not parallel (one head)
Brittle (moving parts)

Random reads take 10s milliseconds

Slow (Mechanical)

Cheap/large storage

Crooks CS162 © UCB Fall 2023

SDD
No seeks
Parallel
No moving parts

Random reads take 10s
microseconds

Wears out

Expensive/smaller storage

20.2

Recall: I/O and Storage Layers

4 A

High Level 1/0 Streams
Low Level 1/0 File Descriptors
> Syscall open(), read() write() close() ...
Open File Descriptions
File System Files/Directories/Indexes
_ _J
4 .)
1/O Driver Commands and Data Transfers

L] ﬁ :
Disks, Flash, Controllers, DMA
_ Y,

Crooks CS162 © UCB Fall 2023 20.3

From Storage to File Systems

I/O APl and
syscalls Variable-Size Buffer Memory Address

Logical Index,
Typically 4 KB

Flash Trans. Layer

Phys. Block

Physical Index,

HDD SSD

Hardware Devices

Phys Index.,
4KB

Crooks CS162 © UCB Fall 2023

20.4

Building a File System

Layer of OS that transforms block interface of disks
(or other block devices) into Files, Directories, etc.

Crooks CS162 © UCB Fall 2023 20.5

Building a File System

Take Llimited hardware interface (array of blocks) and
provide a more convenient/useful interface with:

Find file by name, not block numbers
Organize file names with directories
Map files to blocks
Enforce access restrictions

Keep files intact despite crashes, failures, etc.

Crooks CS162 © UCB Fall 2023 20.6

User vs. System View of a File

Durable Data Structures

(system call interface):
Collection of Bytes (UNIX)

Doesn’t matter to system what kind of data structures
you want to store on disk!

(inside OS):

Collection of blocks (a block is a logical transfer unit,
while a sector is the physical transfer unit)

Block size > sector size: in UNIX, block size is 4KB

Crooks CS162 © UCB Fall 2023 20.7

Translation from User to System View

2~EB-0-=

What happens if user says: ‘“give me bytes 2 - 127~
-Fetch block corresponding to those bytes
-Return just the correct portion of the block

What about writing bytes 2 - 127
-Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size
blocks

Crooks CS162 © UCB Fall 2023 20.8

Disk Management

User-visible group of blocks arranged sequentially
in logical space

User-visible index mapping names to files

The disk is accessed as linear array of sectors
Every sector has integer address
Controller translates from address = physical position
Shields OS from structure of disk

Crooks CS162 © UCB Fall 2023 20.9

What Does the File System Need?

Track free disk blocks
Need to know where to put newly written data

Track which blocks contain data for which files
Need to know where to read a file from

Track files in a directory
Find list of file's blocks given its name

Where do we maintain all of this?
Somewhere on disk

Crooks CS162 © UCB Fall 2023 20.10

Recall: FD & File Descriptors

Mode | Flags | Offset | Phys

O: STDIN
1. STDOUT
2: STDERR

200

200

Tl

Per-Process File

Descriptor

Table Global Open File

Description Table

Crooks CS162 © UCB Fall 2023 20.11

Critical Factors in File System Design

(Hard) Disks Performance Il
Open before Read/Write
Size is determined as they are used Il
Organized into directories

Need to carefully allocate / free blocks

Crooks CS162 © UCB Fall 2023

20.12

Files & Directories

| BN] 0 website
< HH [0 ool) 558 =] o] - Y 0 ! o
P mihus i Kame ~ Date Modified Sizs | Kind
- ¥ M siaflc ~Feb 10, 2076, T2:45 P - Folder
% Dropoox | » Moss Jan 14, 2016, 11:51 AM ~ Faider
¢ iCloud Drive | » B exarmns Mar 10, 2016, 5:03 PM -~ Folder
@ AirDrop [» I forts Jan 14, 2016, 11:51 AM —~ Folder
¢ | * [hw Mar 1, 2016, 7:28 PM Folder
[Desktop | lia) P plt Jan 20, 2016, 3:18 PM 175 KB POF Document
13} adj I & hwi.pdf Fab 11, 2016, B:42 AM 128KB PDF Documant
B¢ Applications ‘ I hwE pot Feb 16, 2016, 9:00 PM 180KB POF Document
= hwd pdd hiar 1, 2016, 7-28 PM 200 KB POF Document
[Documents B Jan 14, 2016, 11:51 AM - Folder
o Downloads [* [lectures Apr 1, 2016, 5:41 PM - Foldar
H Movies | » I pics Jan 18, 2016, 6:13 PM ~ Foider
: | = I proties Jan 25, 2016, 3:32 PM -~ Folder
[Box Sync | » i projects Mar 26, 2016, 10:07 AM -~ Folder
El Google Drive | L - readings Jan 14, 2016, 11:51 AM Foldar
! |/ endivend pdf Jan 14, 2016, 11:51 AM KB POF Document
Devices [= FFS84 pdf Jan 14, 2016, 11:51 AM 1.3MB PDF Documant
i) Remate Disc | garman_bug 81,pa! Jan 14, 2016, 11:51 AM BI0KE PDF Documant
‘ = |acobson-congestion pdf Jan 14, 2016, 11:51 AM 1.2 MB PDF Document
gincler |+ Original_Byzantine.paf Jan 14, 2016, 11:51 AM 1.2MB PDF Document
[adj-MBP [| pamerson_gueue.pdf Jan 14, 2016, 11:51 AM 1.3MB PODF Documant
& adj-mini | | TheracNew.pd! Jan 14, 2016, 11:51 AM 209KB PDF Document
[= IO sections Mas 17, 2016, 10:03 AM —~ Folder
s | |& sectiont.pedt Jan 18, 2016, 6:13 PM 130KB POF Document
ﬂ Al... | = section2.pdf Jan 28, 2016, T:13 PM 108 KB PDF Documant
| | sectionZaol pat Jan 28, 2016, 10:10 AM 12T KB POF Document
Tags [5 sactiond.pdi Feb 5, 2018, 10:15 AM 115KB PDF Document
[sectiondsolpar Feb B, 2016, 10:15 AM 134 KB POF Documant
a sactiond.pdf Feb 10, 2016, 12:45 P 114 KB POF Documeant
|al sactiondsol.pdf Fab 11, 2016, 8:42 AM 134 KB PDF Documant
| z Bl s pendt Eak 169016 1:55 DA 1IN KR BrE Deweasmant
|

& Macintoen HD » [Useds = -2 adj = [l Documents = B GitHul » [webgite

51 Hems, 39.01 GB availabls

Crooks CS162 © UCB Fall 2023

20.13

Files & Directories

foo bar

bar.ixt bar foo

bar.txt

Crooks CS162 © UCB Fall 2023 20.14

Manipulating directories

System calls to access directories

-open / creat / readdir traverse the
structure

-mkdir / rmdir add/remove entries /usr/lib
~1link / unlink (rm)

libc support
- DIR * opendir (const char *dirname)
- struct dirent * readdir (DIR *dirstream)

- int readdir r (DIR *dirstream, struct dirent *entry,
struct dirent **result)

Crooks CS162 © UCB Fall 2023

/usr

/usr/1ib4.3

/usr/1lib4.3/foo0

20.15

Components of a File System

Superblock object: information about file system
Free bitmaps: what is allocated/not allocated
Inode object: represents a specific file
Dentry object: directory entry, single component of a path
File object: open file associated with a process.

Blocks: How files are stored on disk

Crooks CS162 © UCB Fall 2023 20.16

Components of a File System

open (/laptop/Natacha/csl62/foo.txt)

File path

Directory
Structure

One Block = multiple sectors

_ Ex: 512 sector, 4K block
File number

“inumber”
Data blocks

Inode

Crooks CS162 © UCB Fall 2023 20.17

The (In)famous Inode

Mode | Flags | Offset
U R 200 [Inode Number
U Rw | 200 [Inode Number

O: STDIN
1. STDOUT
2: STDERR

Tl

Per-Process File

Descriptor
Table

Global Open File
Description Table

Crooks CS162 © UCB Fall 2023

20.18

How to get the Inode number?

Look up in directory structure

Directory is a specialised file containing
<file_name : inode number> mappings

File number could be a file or another directory

Each <file_name : inode> mapping is called a directory
entry

Crooks CS162 © UCB Fall 2023 20.19

How to read a file from disk

Let’'s read file /foo/bar.txt (Time goes downwards)

data inode
bitmap bitmap

root foo bar
inode inode inode

root foo bar bar bar
data data data data data

0] 1] 2]

read
read
open(bar) read
read

read
read

read() read
write
read

read() read
write
read

read() read
write

Crooks CS162 © UCB Fall 2023

20.20

Characteristics of Files

A Five-Year Study of File-System Metadata
NITIN AGRAWAL Published in FAST 2007

University of Wisconsin, Madison
and

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

Crooks CS162 © UCB Fall 2023 20.21

Observation #1: Most Files

Are Small

12000 ! [. T

10‘003 Lo i......, :‘i-\.'!'.'.::."a.:‘_._.:. , ,

Files per file system

I # _'- F -
4000 v e

; :-'r.'. . _:"

i ¥ e #

2000

i i] . W :
. NS NP . U | PSR, WU S, W T — R .
Eﬂﬂﬁ : ; v ¥ i -
3 £ P H T =Y 3
i i " w : 0 i
H i ’ K | H

1270100 1 PEEE— ,’: ‘ N S e -

0 8 128 2K 32K

File size (bytes, log scale, power-of-2 bins)

Fig. 2. Histograms of files by size.

Crooks CS162 © UCB Fall 2023

512K

8M

128M

20.22

Observation #2: Most Bytes are in Large Files

1800 T T g I T T T 1 T

1000 koo B U 4 SR W—— .. S S
500 ; ; AN Loy e £ N ; :
400

Used space per file system (MB)

200

512 4K 32K 256K 2M 16M 128M 1G 8G 64G
Containing file size (bytes, log scale, power-of-2 bins)

Fig. 4. Histograms of bytes by containing file size.

Crooks CS162 © UCB Fall 2023 20.23

The key to it all: the Inode

File Number is index into set of inode arrays
Index structure is an array of /nodes

Each inode corresponds to a file and contains its
metadata

Inode maintains a multi-level tree structure to find storage
blocks for files

Original /node format appeared in BSD 4.1
Berkeley Standard Distribution Unix!

Crooks CS162 © UCB Fall 2023

20.24

Inode Structure

Inode Array Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
Fil,e’/
Metadata /‘:\
Direct T
Pointers \:\
Indirec?Po[nter \:\
Dbl. Indirect Ptr. 1 o ‘\:\
Tripl. Indrect Ptr. \—'\%\D
D—’D

Crooks CS162 © UCB Fall 2023 20.25

File Attributes

Inode Array
File”
Mmédata
£
User
Group
9 basic access control bits
- UGO x RWX
SetUID bit

- execute at owner
permissions
rather than user
SetGID bit
- execute at group’s
permissions

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Crooks CS162 © UCB Fall 2023

20.26

Direct Pointers

Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

Direct pointers

4kB blocks =

sufficient for File”
: etadata
files up to 48KB | /D

. 12000 : -
Direct ' ' . ps
. 2001
Pointers 10000 [t o S S— : 2002 i
; N 1] .
c == " 2‘304
‘ § aoog Ho e S
. 2 aooo || Ho
. ‘g- A
Indirect Pointer 8 om0)
Dbl. Indirect Ptr. Jo1 | AR
Tripl. Indrect Ptr: L g A [y O
2000 fp- A
__.:._.-"' "‘*-:-.:_
g il . TR
0 B 128 2K 32K 512K &M 128M
File size (bytes, log scale, powar-of-2 hing)
Fig. 2. Histograms of files by size,

Crooks CS162 © UCB Fall 2023 20.27

Indirect Pointers

Inode Array Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

point to a disk
block containing
only pointers

l/\//le‘lc:/zial/ceiz;ta /D
Indirect pointers | /
~_—T]

Direct

Crooks CS162 © UCB Fall 2023

20.28

Indirect Pointers

Assume Y4KB blocks

What is the maximum size of a file with only direct
pointers?

12 * 4 KB = 48 KB

What is the maximum size of a file with one indirect
pointer?

12 * 4 KB + 1024 * 4KB = 4.1MB

What is the maximum size of a file with double
indirect pointers?

12 * 4KB + 1024 * 4KB + 1024 * 1024 * H4KB =
4.6 GB

Crooks CS162 © UCB Fall 2023 20.29

Inodes form an on-disk index
Sample file in multilevel
indexed format:
Inode Array Triple Double

- 12 direct ptrs, 4K blocks

- How many accesses for
block #237 (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

— How about block #57
» Qne: One for data

- Block #3407

» Three: double indirect block,
indirect block, and data

Inode

Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

File”
Metadata

Direct

Pointers

Indirect Pointer

Dbl. Indirect Ptr.

Tripl. Indrect Ptr.

Crooks CS162 © UCB Fall 2023

20.30

Creating new files

Inodes are (logically) stored in an inode table

File system stores a bitmap of free inodes and
free blocks

On creating a new file,

1) Check which inode is free/where that inode
is stored

2) Check which data blocks are free

Crooks CS162 © UCB Fall 2023 20.31

Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Each block is 4KB
Inode is 250 Bytes

Crooks CS162 © UCB Fall 2023

20.32

Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Crooks CS162 © UCB Fall 2023 20.33

Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Inode Block

Crooks CS162 © UCB Fall 2023 20.34

Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

l d Bl K noaes noaes Nnoaes noaes NOAJeEes
Sblock moces Moo |35 (4 s N o
ItMmap § bitmap g 15 31 47 63 79

Crooks CS162 © UCB Fall 2023 20.35

Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Nnoaes Nnoaes NoaQeEs NOQES NodJdes

0 to 16 to 32 to 48 to g O64 to
47 63

Crooks CS162 © UCB Fall 2023 20.36

Putting it together

/

Allocate inode 0
Create data block

Nnoaes Nnoaes NoaQeEs NOQES NodJdes

0 to 16 to 32 to 48 to g O64 to
47 63

Crooks CS162 © UCB Fall 2023 20.37

Putting it together

/

Allocate inode 0
Create data block

nodes Y Inodes Y Inodes Y Inodes Y Inodes
1000

0 to 16 to 32 to 48 to g O64 to
47 63

Sblock | 1000

Crooks CS162 © UCB Fall 2023 20.38

Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

nodes Y Inodes Y Inodes Y Inodes Y Inodes
1000

0 to 16 to 32 to 48 to g O64 to
47 63

Sblock | 1000

Crooks CS162 © UCB Fall 2023 20.39

Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

nodes Y Inodes Y Inodes Y Inodes
Sblock it 16 to |32 to J 48 to o4 to
47 63

1>
<c5162 1>

Crooks CS162 © UCB Fall 2023 20.40

Putting it together

/csle2/natacha.txt (60KB)
Allocate inode 3
Update direntry

Create indirect block
Create datablocks

Noaes NoaeEs

nodes Y Inodes Y Inodes
1111

Sblock | 1101 1111 0 to 16 to f§ 32 to 48 to 64 to
- 47
1> <..0> lndxrect Data Data Data Data
<cﬂ£21> <nat..,.3> H} block block block block block

Crooks CS162 © UCB Fall 2023 20.41

Unix File System (Berkeley FFS)

lntroducing Disk Awareness

A Fast File System for UNIX*

Marshall Kirk MoRKusick, William N, Jovi,
Sanmel . Lefflery, Robert 5. Fabry

Computer Systems Rescarch Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of Califormnia, Berkeley
Berkeley, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation
provides substantially higher throughput rates by using more [exible allocation policies
that allow better locality of reference and can be adapted to a wide range of peripheral
and processor characteristics. The new file system clusters data that is sequentially
accessed and provides two block sizes to allow fast access (o large files while not wasting
large amounts of space for small files. File access rates of up to ten times faster than the
traditional UNIX file system are experienced. Long needed enhancements to the pro-

Crooks CS162 © UCB Fall 2023 20.42

Recall: Critical Factors in File System Design

(Hard) Disk Performance lll
Maximize sequential access, minimize seeks

Open before Read/Write

- Can perform pro]g_ection checks and look up where the
actual Tile resource are, In advance

Size is determined as they are used Il
- Can write (or read zeros) to expand the file
- Start small and grow, need to make room

Organized into directories
~What data structure (on disk) for that?

Need to carefully allocate / free blocks
-Such that access remains efficient

Crooks CS162 © UCB Fall 2023 20.43

Recall: Magnetic Disks

Track

Sector

Cylinders: all the tracks under the
head at a given point on all surfaces

Head | &~
S

Cylinder
Read/write data is a three-stage process: “Platter

~-Seek time: position the head/arm over the proper
track

~Rotational latency: wait for desired sector to rotate
under r/w head

~Transfer time: transfer a block of bits (sector)
under r/w head

Crooks CS162 © UCB Fall 2023 20.44

Fast File System (BSD 4.2, 1984)

Same inode structure as in BSD 4.1

-same file header and triply indirect blocks like we
just studied

-Some changes to block sizes from 1024=4096 bytes
for performance

Optimization for Performance and Reliability:

—Distorlibute inodes among different tracks to be closer
to data

-Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
-10% reserved disk space

- Skip-sector positioning (mentioned later)

Crooks CS162 © UCB Fall 2023 20.45

FFS Locality: Block Groups

Distribute header information [

(inodes) closer to the data o medGrowpo T
blocks, in same ‘“cylinder group” , S e \\

- | -
J /.-f’ L - e, Y "1_“.

. o . ;..f’{ __J,f Ve -Blnck Gm_u;“ix“% N\ \
File system volume divided into A e\

-
-

| / yd “x\\ ?’;E_ ™ .1“-. | III".
set of block groups L/ % .
o[AR
| lﬁ' i | " / g n@ | & ‘ |
I|| II'.I %; II".,I I' g !I..-'E I.'II Ei* II.I I-'I
Data blocks, metadata, and free VOREN N A& s
space ﬂ'-’ N gt S/ Ff
interleaved within block group N N, e S
AN \\Qm: B ‘atg, Iz P tp,-,‘é}/ 4
\ JQGQ(&;:""- . E_’__..--*' Gf_,t: /’E}
AN B P

Put directory and its files in S
common block group

Crooks CS162 © UCB Fall 2023 20.46

FFS Locality: Block Groups

First-Free allocation of new file
blocks

- To expand file, first try

successive blocks in bitmap, then

choose new range of blocks

-Few little holes at start, big
sequential runs at

end of group
-Avoids fragmentation
-Sequential layout for big files

Important: keep 10% or more freel

-Reserve space in the Block
Group

Crooks CS162 © UCB Fall 2023

T " Block Group 0

g o

/ X/,f""". Block Group 1

/ e
A i | S

= NN .

E AN —
N 0 e

S B 3 Blgcks for ,/

——

/ " BlockGroup2 ™

.,

L

/

s JII'I -"llll
_____.-"' . 'I,I'Q /z"
\? ’;9‘;&
.II Ca aﬁa -"Hf o
o

o

)
-
e TES fd 1,

%,

N\

T

< Space BmaP-

S

20.47

Attack of the Rotational Delay

Missing blocks due to rotational delay

Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/blockl!

Crooks CS162 © UCB Fall 2023

20.48

Attack of the Rotational Delay

Solution 1: Skip sector positioning (“interleaving”)

»Place the blocks from one file on every other
block of a track: give time for processing to
overlap rotation

»Can be done by OS or in modern drives by the
disk controller

Solution 2: Read ahead: read next block right after
first, even if application hasn’t asked for [t yet

» This can be done either by OS (read ahead)

»By disk itself (track buffers) - many disk
controllers have internal RAM that allows them to
read a complete track

Crooks CS162 © UCB Fall 2023 20.49

UNIX 4.2 BSD FFS

Pros
-Efficient storage for both small and large files
-Locality for both small and large files
—Locality for metadata and data
-No defragmentation necessary!

Cons

~Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)

-Inefficient encoding when file is mostly contiguous on disk

~Need to reserve 10-20% of free space to prevent
fragmentation

Crooks CS162 © UCB Fall 2023 20.50

What about other file systems?

-

_

FAT:
File Allocation Table

(MS-DOS,1977)

~

J

Windows NTFS

Crooks CS162 © UCB Fall 2023

20.51

FAT (File Allocation Table)

Assume (for now) we have a
way to translate a path to
a ‘“file number”

- i.e., a directory structure

Disk Storage is a collection of
Blocks

— Just hold file data
(offset o = < B, x >)

Example: file read 31, < 2, x >
— Index into FAT with file number
-~ Follow linked Llist to block

-~ Read the block from disk
into memory

memory

Crooks CS162 © UCB Fall 2023

0:

File number \
31:

N-1:

FAT

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 2

20.52

FAT (File Allocation Table)

File is a collection of disk FAT Disk Blocks
blocks 0 N
Eé'cl'ksls linked Llist 1-1 with 31.----,-_-] ST

File 31, Block 1

File number is index of root of
block list for the file

File offset: block number and i
0

ffset within block free

Follow list to get block number s File 31, Block 2

Unused blocks marked free N-1: N-1:
- Could require scan to find
- Or, could use a free list memory

Crooks CS162 © UCB Fall 2023 20.53

FAT (File Allocation Table)

FAT Disk Blocks
0: O:
File number \
file_write(31, < 3, y >) i i Hes
-Grab free block /& File 31, Block 1
—Linking them into file
- File 31, Block 3
Nhad File 31, Block 2
N-1: N-1:
memory

Crooks CS162 © UCB Fall 2023 20.54

FAT (File Allocation Table)

Where is FAT stored?
- On disk

How to format a disk?

— Zero the blocks, mark FAT

entries ‘‘free”

How to quick format a disk?
- Mark FAT entries ‘“free”

Simple: can implement in
device firmware

free

File #2

memory

Crooks CS162 © UCB Fall 2023

0:

File #1
Ny

/

N-1:

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2

20.55

FAT: Directories

file 5268830 end
a"hnmef'tom ﬁlE"
Name | usic Work Free footxt | Free
File Number 5268830 88026158 35002320 85200219 Space 66212871 Space
Next | \\\ I .J-”

A directory is a file containing <file_name: file_number> mappings

In FAT: file attributes are kept in directory (lll)
- Not directly associated with the file itself

Each directory a linked list of entries
- Requires linear search of directory to find particular entry

Where do you find root directory (*“/")?

- At well-defined place on disk
~For FAT, this is at block 2 (there are no blocks O or 1)

Crooks CS162 © UCB Fall 2023

20.56

FAT Discussion

_ FAT Disk Blocks

Suppose you start with the 0 o

31 ":I File 31, Block O
e Time to find block? Flle 31, Block 1
e Block layout for file? ‘
e Sequential access?
e« Random access? -)| FRehiede
e Fragmentation? | ya
e Small files? File #2 o File 31, Block 2
e Big files?

N-1: N-1:

memory

Crooks CS162 © UCB Fall 2023 20.57

	CS162�Operating Systems and�Systems Programming�Lecture 19���File Systems
	Recall: HDD vs. SSD Comparison
	Recall: I/O and Storage Layers
	From Storage to File Systems
	Building a File System
	Building a File System
	User vs. System View of a File
	Translation from User to System View
	Disk Management
	What Does the File System Need?
	Recall: FD & File Descriptors
	Critical Factors in File System Design
	Files & Directories
	Files & Directories
	Manipulating directories
	Components of a File System
	Components of a File System
	The (In)famous Inode
	How to get the Inode number?
	How to read a file from disk
	Characteristics of Files
	Observation #1: Most Files Are Small
	Observation #2: Most Bytes are in Large Files
	The key to it all: the Inode
	Inode Structure
	File Attributes
	Direct Pointers
	Indirect Pointers
	Indirect Pointers
	Inodes form an on-disk index
	Creating new files
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Unix File System (Berkeley FFS)
	Recall: Critical Factors in File System Design
	Recall: Magnetic Disks
	Fast File System (BSD 4.2, 1984)
	FFS Locality: Block Groups
	FFS Locality: Block Groups
	Attack of the Rotational Delay
	Attack of the Rotational Delay
	UNIX 4.2 BSD FFS
	What about other file systems?
	FAT (File Allocation Table)
	FAT (File Allocation Table)
	FAT (File Allocation Table)
	FAT (File Allocation Table)
	FAT: Directories
	FAT Discussion

