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Recall: HDD vs. SSD Comparison

Usually 10 DOD or 15 DO0 rpm SAS drives
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HDD
Require seek + rotation
Not parallel (one head)
Brittle (moving parts)

Random reads take 10s milliseconds

Slow (Mechanical)

Cheap/large storage
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SDD
No seeks
Parallel
No moving parts

Random reads take 10s
microseconds

Wears out

Expensive/smaller storage
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Recall: I/O and Storage Layers

4 A

High Level 1/0 Streams
Low Level 1/0 File Descriptors
> Syscall open(), read() write() close() ...
Open File Descriptions
File System Files/Directories/Indexes
\_ _J
4 . )
1/O Driver Commands and Data Transfers

L] ﬁ :
Disks, Flash, Controllers, DMA
\_ Y,
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From Storage to File Systems

I/O APl and
syscalls Variable-Size Buffer Memory Address

Logical Index,
Typically 4 KB

Flash Trans. Layer

Phys. Block

Physical Index,

HDD SSD

Hardware Devices

Phys Index.,
4KB
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Building a File System

Layer of OS that transforms block interface of disks
(or other block devices) into Files, Directories, etc.
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Building a File System

Take Llimited hardware interface (array of blocks) and
provide a more convenient/useful interface with:

Find file by name, not block numbers
Organize file names with directories
Map files to blocks
Enforce access restrictions

Keep files intact despite crashes, failures, etc.

Crooks CS162 © UCB Fall 2023 20.6



User vs. System View of a File

Durable Data Structures

(system call interface):
Collection of Bytes (UNIX)

Doesn’t matter to system what kind of data structures
you want to store on disk!

(inside OS):

Collection of blocks (a block is a logical transfer unit,
while a sector is the physical transfer unit)

Block size > sector size: in UNIX, block size is 4KB
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Translation from User to System View

2~EB-0-=

What happens if user says: ‘“give me bytes 2 - 127~
-Fetch block corresponding to those bytes
-Return just the correct portion of the block

What about writing bytes 2 - 127
-Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size
blocks
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Disk Management

User-visible group of blocks arranged sequentially
in logical space

User-visible index mapping names to files

The disk is accessed as linear array of sectors
Every sector has integer address
Controller translates from address = physical position
Shields OS from structure of disk
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What Does the File System Need?

Track free disk blocks
Need to know where to put newly written data

Track which blocks contain data for which files
Need to know where to read a file from

Track files in a directory
Find list of file's blocks given its name

Where do we maintain all of this?
Somewhere on disk
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Recall: FD & File Descriptors

Mode | Flags | Offset | Phys

O: STDIN
1. STDOUT
2: STDERR

200

200

Tl

Per-Process File

Descriptor

Table Global Open File

Description Table
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Critical Factors in File System Design

(Hard) Disks Performance Il
Open before Read/Write
Size is determined as they are used Il
Organized into directories

Need to carefully allocate / free blocks

Crooks CS162 © UCB Fall 2023
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Files & Directories
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Files & Directories

foo bar

bar.ixt bar foo

bar.txt
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Manipulating directories

System calls to access directories

-open / creat / readdir traverse the
structure

-mkdir / rmdir add/remove entries /usr/lib
~1link / unlink (rm)

libc support
- DIR * opendir (const char *dirname)
- struct dirent * readdir (DIR *dirstream)

- int readdir r (DIR *dirstream, struct dirent *entry,
struct dirent **result)

Crooks CS162 © UCB Fall 2023

/usr

/usr/1ib4.3

/usr/1lib4.3/foo0
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Components of a File System

Superblock object: information about file system
Free bitmaps: what is allocated/not allocated
Inode object: represents a specific file
Dentry object: directory entry, single component of a path
File object: open file associated with a process.

Blocks: How files are stored on disk
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Components of a File System

open (/laptop/Natacha/csl62/foo.txt)

File path

Directory
Structure

One Block = multiple sectors

_ Ex: 512 sector, 4K block
File number

“inumber”
Data blocks

Inode

Crooks CS162 © UCB Fall 2023 20.17



The (In)famous Inode

Mode | Flags | Offset
U R 200 [ Inode Number
U Rw | 200 [Inode Number

O: STDIN
1. STDOUT
2: STDERR

Tl

Per-Process File

Descriptor
Table

Global Open File
Description Table
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How to get the Inode number?

Look up in directory structure

Directory is a specialised file containing
<file_name : inode number> mappings

File number could be a file or another directory

Each <file_name : inode> mapping is called a directory
entry

Crooks CS162 © UCB Fall 2023 20.19



How to read a file from disk

Let’'s read file /foo/bar.txt (Time goes downwards)

data  inode
bitmap bitmap

root foo bar
inode inode inode

root foo bar bar bar
data data data data data

0] 1] 2]

read
read
open(bar) read
read

read
read

read() read
write
read

read() read
write
read

read() read
write

Crooks CS162 © UCB Fall 2023
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Characteristics of Files

A Five-Year Study of File-System Metadata
NITIN AGRAWAL Published in FAST 2007

University of Wisconsin, Madison
and

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research
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Observation #1: Most Files

Are Small
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Fig. 2. Histograms of files by size.
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Observation #2: Most Bytes are in Large Files
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Fig. 4. Histograms of bytes by containing file size.
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The key to it all: the Inode

File Number is index into set of inode arrays
Index structure is an array of /nodes

Each inode corresponds to a file and contains its
metadata

Inode maintains a multi-level tree structure to find storage
blocks for files

Original /node format appeared in BSD 4.1
Berkeley Standard Distribution Unix!

Crooks CS162 © UCB Fall 2023
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Inode Structure

Inode Array Triple  Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
Fil,e’/
Metadata /‘:\
Direct T
Pointers \:\
Indirec?Po[nter \:\
Dbl. Indirect Ptr. 1 o ‘\:\
Tripl. Indrect Ptr. \—'\%\D
D—’D
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File Attributes

Inode Array
File”
Mmédata
£
User
Group
9 basic access control bits
- UGO x RWX
SetUID bit

- execute at owner
permissions
rather than user
SetGID bit
- execute at group’s
permissions

Triple  Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Crooks CS162 © UCB Fall 2023
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Direct Pointers

Triple  Double
Indirect Indirect Indirect Data
/ Inode  Blocks Blocks Blocks Blocks

Direct pointers

4kB blocks =

sufficient for File”
: etadata
files up to 48KB | /D

. 12000 : -
Direct ' ' . ps
. 2001
Pointers 10000 [t o S S— : 2002 i
; N 1] .
c == " 2‘304
‘ § aoog Ho e S
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. ‘g- A
Indirect Pointer 8 om0 )
Dbl. Indirect Ptr. Jo1 | AR
Tripl. Indrect Ptr: L g A [y O
2000 fp- A
__.:._.-"' "‘*-:-.:_
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Fig. 2. Histograms of files by size,
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Indirect Pointers

Inode Array Triple  Double
Indirect Indirect Indirect Data
/ Inode  Blocks Blocks Blocks Blocks

point to a disk
block containing
only pointers

l/\//le‘lc:/zial/ceiz;ta /D
Indirect pointers | /
~_—T]

Direct

Crooks CS162 © UCB Fall 2023
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Indirect Pointers

Assume Y4KB blocks

What is the maximum size of a file with only direct
pointers?

12 * 4 KB = 48 KB

What is the maximum size of a file with one indirect
pointer?

12 * 4 KB + 1024 * 4KB = 4.1MB

What is the maximum size of a file with double
indirect pointers?

12 * 4KB + 1024 * 4KB + 1024 * 1024 * H4KB =
4.6 GB
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Inodes form an on-disk index
Sample file in multilevel
indexed format:
Inode Array Triple  Double

- 12 direct ptrs, 4K blocks

- How many accesses for
block #237 (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

— How about block #57
» Qne: One for data

- Block #3407

» Three: double indirect block,
indirect block, and data

Inode

Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

File”
Metadata

Direct

Pointers

Indirect Pointer

Dbl. Indirect Ptr.

Tripl. Indrect Ptr.

Crooks CS162 © UCB Fall 2023
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Creating new files

Inodes are (logically) stored in an inode table

File system stores a bitmap of free inodes and
free blocks

On creating a new file,

1) Check which inode is free/where that inode
is stored

2) Check which data blocks are free

Crooks CS162 © UCB Fall 2023 20.31



Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Each block is 4KB
Inode is 250 Bytes

Crooks CS162 © UCB Fall 2023
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Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Crooks CS162 © UCB Fall 2023 20.33



Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Inode Block

Crooks CS162 © UCB Fall 2023 20.34



Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

l d Bl K noaes noaes Nnoaes noaes NOAJeEes
Sblock moces Moo |35 (4 s N o
ItMmap § bitmap g 15 31 47 63 79
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Putting it together

/csl162/natacha.txt (60KB)
/csl162/natasha.txt (4KB)

Nnoaes Nnoaes NoaQeEs NOQES NodJdes

0 to 16 to 32 to 48 to g O64 to
47 63

Crooks CS162 © UCB Fall 2023 20.36



Putting it together

/

Allocate inode 0
Create data block

Nnoaes Nnoaes NoaQeEs NOQES NodJdes

0 to 16 to 32 to 48 to g O64 to
47 63

Crooks CS162 © UCB Fall 2023 20.37



Putting it together

/

Allocate inode 0
Create data block

nodes Y Inodes Y Inodes Y Inodes Y Inodes
1000

0 to 16 to 32 to 48 to g O64 to
47 63

Sblock | 1000

Crooks CS162 © UCB Fall 2023 20.38



Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

nodes Y Inodes Y Inodes Y Inodes Y Inodes
1000

0 to 16 to 32 to 48 to g O64 to
47 63

Sblock | 1000

Crooks CS162 © UCB Fall 2023 20.39



Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

nodes Y Inodes Y Inodes Y Inodes
Sblock it 16 to |32 to J 48 to o4 to
47 63

1>
<c5162 1>

Crooks CS162 © UCB Fall 2023 20.40



Putting it together

/csle2/natacha.txt (60KB)
Allocate inode 3
Update direntry

Create indirect block
Create datablocks

Noaes NoaeEs

nodes Y Inodes Y Inodes
1111

Sblock | 1101 1111 0 to 16 to f§ 32 to 48 to 64 to
- 47
1> <..0> lndxrect Data Data Data Data
<cﬂ£21> <nat..,.3> H} block block block block block

Crooks CS162 © UCB Fall 2023 20.41




Unix File System (Berkeley FFS)

lntroducing Disk Awareness

A Fast File System for UNIX*

Marshall Kirk MoRKusick, William N, Jovi,
Sanmel . Lefflery, Robert 5. Fabry

Computer Systems Rescarch Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of Califormnia, Berkeley
Berkeley, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation
provides substantially higher throughput rates by using more [exible allocation policies
that allow better locality of reference and can be adapted to a wide range of peripheral
and processor characteristics. The new file system clusters data that is sequentially
accessed and provides two block sizes to allow fast access (o large files while not wasting
large amounts of space for small files. File access rates of up to ten times faster than the
traditional UNIX file system are experienced. Long needed enhancements to the pro-
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Recall: Critical Factors in File System Design

(Hard) Disk Performance lll
Maximize sequential access, minimize seeks

Open before Read/Write

- Can perform pro]g_ection checks and look up where the
actual Tile resource are, In advance

Size is determined as they are used Il
- Can write (or read zeros) to expand the file
- Start small and grow, need to make room

Organized into directories
~What data structure (on disk) for that?

Need to carefully allocate / free blocks
-Such that access remains efficient

Crooks CS162 © UCB Fall 2023 20.43



Recall: Magnetic Disks

Track

Sector

Cylinders: all the tracks under the
head at a given point on all surfaces

Head | &~
S

Cylinder
Read/write data is a three-stage process: “Platter

~-Seek time: position the head/arm over the proper
track

~Rotational latency: wait for desired sector to rotate
under r/w head

~Transfer time: transfer a block of bits (sector)
under r/w head

Crooks CS162 © UCB Fall 2023 20.44



Fast File System (BSD 4.2, 1984)

Same inode structure as in BSD 4.1

-same file header and triply indirect blocks like we
just studied

-Some changes to block sizes from 1024=4096 bytes
for performance

Optimization for Performance and Reliability:

—Distorlibute inodes among different tracks to be closer
to data

-Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
-10% reserved disk space

- Skip-sector positioning (mentioned later)

Crooks CS162 © UCB Fall 2023 20.45



FFS Locality: Block Groups

Distribute header information [

(inodes) closer to the data o medGrowpo T
blocks, in same ‘“cylinder group” , S e \\
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FFS Locality: Block Groups

First-Free allocation of new file
blocks

- To expand file, first try

successive blocks in bitmap, then

choose new range of blocks

-Few little holes at start, big
sequential runs at

end of group
-Avoids fragmentation
-Sequential layout for big files

Important: keep 10% or more freel

-Reserve space in the Block
Group

Crooks CS162 © UCB Fall 2023
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Attack of the Rotational Delay

Missing blocks due to rotational delay

Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/blockl!

Crooks CS162 © UCB Fall 2023

20.48



Attack of the Rotational Delay

Solution 1: Skip sector positioning (“interleaving”)

»Place the blocks from one file on every other
block of a track: give time for processing to
overlap rotation

»Can be done by OS or in modern drives by the
disk controller

Solution 2: Read ahead: read next block right after
first, even if application hasn’t asked for [t yet

» This can be done either by OS (read ahead)

»By disk itself (track buffers) - many disk
controllers have internal RAM that allows them to
read a complete track

Crooks CS162 © UCB Fall 2023 20.49



UNIX 4.2 BSD FFS

Pros
-Efficient storage for both small and large files
-Locality for both small and large files
—Locality for metadata and data
-No defragmentation necessary!

Cons

~Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)

-Inefficient encoding when file is mostly contiguous on disk

~Need to reserve 10-20% of free space to prevent
fragmentation

Crooks CS162 © UCB Fall 2023 20.50



What about other file systems?

-

\_

FAT:
File Allocation Table

(MS-DOS,1977)

~

J

Windows NTFS

Crooks CS162 © UCB Fall 2023
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FAT (File Allocation Table)

Assume (for now) we have a
way to translate a path to
a ‘“file number”

- i.e., a directory structure

Disk Storage is a collection of
Blocks

— Just hold file data
(offset o = < B, x >)

Example: file read 31, < 2, x >
— Index into FAT with file number
-~ Follow linked Llist to block

-~ Read the block from disk
into memory

memory

Crooks CS162 © UCB Fall 2023

0:

File number \
31:

N-1:

FAT

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 2
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FAT (File Allocation Table)

File is a collection of disk FAT Disk Blocks
blocks 0 N
Eé'cl'ksls linked Llist 1-1 with 31.----,-_-] ST

File 31, Block 1

File number is index of root of
block list for the file

File offset: block number and i
0

ffset within block free

Follow list to get block number s File 31, Block 2

Unused blocks marked free N-1: N-1:
- Could require scan to find
- Or, could use a free list memory

Crooks CS162 © UCB Fall 2023 20.53



FAT (File Allocation Table)

FAT Disk Blocks
0: O:
File number \
file_write(31, < 3, y >) i i Hes
-Grab free block /& File 31, Block 1
—Linking them into file
- File 31, Block 3
Nhad File 31, Block 2
N-1: N-1:
memory

Crooks CS162 © UCB Fall 2023 20.54



FAT (File Allocation Table)

Where is FAT stored?
- On disk

How to format a disk?

— Zero the blocks, mark FAT

entries ‘‘free”

How to quick format a disk?
- Mark FAT entries ‘“free”

Simple: can implement in
device firmware

free

File #2

memory

Crooks CS162 © UCB Fall 2023

0:

File #1
Ny

/

N-1:

N-1:

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 3

File 31, Block 2
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FAT: Directories

file 5268830 end
a"hnmef'tom ﬁlE"
Name | usic Work Free footxt | Free
File Number 5268830 88026158 35002320 85200219 Space 66212871 Space
Next | \\\ I .J-”

A directory is a file containing <file_name: file_number> mappings

In FAT: file attributes are kept in directory (lll)
- Not directly associated with the file itself

Each directory a linked list of entries
- Requires linear search of directory to find particular entry

Where do you find root directory (*“/")?

- At well-defined place on disk
~For FAT, this is at block 2 (there are no blocks O or 1)

Crooks CS162 © UCB Fall 2023
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FAT Discussion

_ FAT Disk Blocks

Suppose you start with the 0 o

31 ":I File 31, Block O
e Time to find block? Flle 31, Block 1
e Block layout for file? ‘
e Sequential access?
e« Random access? - )| FRehiede
e Fragmentation? | ya
e Small files? File #2 o File 31, Block 2
e Big files?

N-1: N-1:

memory

Crooks CS162 © UCB Fall 2023 20.57
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