
CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems
Professor Natacha Crooks

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

20.2Crooks CS162 © UCB Fall 2023

Recall: HDD vs. SSD Comparison

HDD SDD

Require seek + rotation No seeks

Not parallel (one head) Parallel

Brittle (moving parts) No moving parts

Random reads take 10s milliseconds Random reads take 10s
microseconds

Slow (Mechanical) Wears out

Cheap/large storage Expensive/smaller storage

20.3Crooks CS162 © UCB Fall 2023

Recall: I/O and Storage Layers

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Open File Descriptions

20.4Crooks CS162 © UCB Fall 2023

From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index.,
4KB

Sector(s)Sector(s)

Erasure Page

20.5Crooks CS162 © UCB Fall 2023

Building a File System

Layer of OS that transforms block interface of disks
(or other block devices) into Files, Directories, etc.

20.6Crooks CS162 © UCB Fall 2023

Building a File System

Take limited hardware interface (array of blocks) and
provide a more convenient/useful interface with:

Naming: Find file by name, not block numbers

Structure: Organize file names with directories

Organization: Map files to blocks

Protection: Enforce access restrictions

Reliability: Keep files intact despite crashes, failures, etc.

20.7Crooks CS162 © UCB Fall 2023

User vs. System View of a File
User’s view:

Durable Data Structures

System’s view (system call interface):
Collection of Bytes (UNIX)

Doesn’t matter to system what kind of data structures
you want to store on disk!

System’s view (inside OS):
Collection of blocks (a block is a logical transfer unit,

while a sector is the physical transfer unit)
Block size ≥ sector size; in UNIX, block size is 4KB

20.8Crooks CS162 © UCB Fall 2023

Translation from User to System View

What happens if user says: “give me bytes 2 – 12?”
–Fetch block corresponding to those bytes
–Return just the correct portion of the block

What about writing bytes 2 – 12?
–Fetch block, modify relevant portion, write out block

Everything inside file system is in terms of whole-size
blocks

File
System

File
(Bytes)

20.9Crooks CS162 © UCB Fall 2023

Disk Management

File:
User-visible group of blocks arranged sequentially

in logical space

Directory:
User-visible index mapping names to files

Logical Block Addressing (LBA)

The disk is accessed as linear array of sectors
Every sector has integer address

Controller translates from address ⇒ physical position
Shields OS from structure of disk

20.10Crooks CS162 © UCB Fall 2023

What Does the File System Need?
Track free disk blocks

Need to know where to put newly written data

Track which blocks contain data for which files
Need to know where to read a file from

Track files in a directory
Find list of file's blocks given its name

Where do we maintain all of this?
Somewhere on disk

20.11Crooks CS162 © UCB Fall 2023

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200U

4

U 200RW

Recall: FD & File Descriptors

Global Open File
Description Table

20.12Crooks CS162 © UCB Fall 2023

Critical Factors in File System Design

(Hard) Disks Performance !!!

Open before Read/Write

Size is determined as they are used !!!

Organized into directories

Need to carefully allocate / free blocks

20.13Crooks CS162 © UCB Fall 2023

Files & Directories

20.14Crooks CS162 © UCB Fall 2023

Files & Directories

20.15Crooks CS162 © UCB Fall 2023

Manipulating directories

System calls to access directories
– open / creat / readdir traverse the
structure

– mkdir / rmdir add/remove entries
– link / unlink (rm)

libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent *entry,
 struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

20.16Crooks CS162 © UCB Fall 2023

Components of a File System

Superblock object: information about file system

Free bitmaps: what is allocated/not allocated

Inode object: represents a specific file

Dentry object: directory entry, single component of a path

File object: open file associated with a process.

Blocks: How files are stored on disk

20.17Crooks CS162 © UCB Fall 2023

Components of a File System

File path

Directory
Structure

File
Header
StructureFile number

“inumber”

…

Data blocks

Inode

One Block = multiple sectors
Ex: 512 sector, 4K block

open(/laptop/Natacha/cs162/foo.txt)

20.18Crooks CS162 © UCB Fall 2023

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200U

4

U 200RW

The (In)famous Inode

Global Open File
Description Table

Inode Number

Inode Number

20.19Crooks CS162 © UCB Fall 2023

How to get the Inode number?

Look up in directory structure

Directory is a specialised file containing
<file_name : inode number> mappings

File number could be a file or another directory

Each <file_name : inode> mapping is called a directory
entry

20.20Crooks CS162 © UCB Fall 2023

How to read a file from disk
Let’s read file /foo/bar.txt (Time goes downwards)

20.21Crooks CS162 © UCB Fall 2023

Characteristics of Files

Published in FAST 2007

20.22Crooks CS162 © UCB Fall 2023

Observation #1: Most Files Are Small

20.23Crooks CS162 © UCB Fall 2023

Observation #2: Most Bytes are in Large Files

20.24Crooks CS162 © UCB Fall 2023

The key to it all: the Inode

File Number is index into set of inode arrays

Index structure is an array of inodes

Each inode corresponds to a file and contains its
metadata

Inode maintains a multi-level tree structure to find storage
blocks for files

Original inode format appeared in BSD 4.1
Berkeley Standard Distribution Unix!

20.25Crooks CS162 © UCB Fall 2023

Inode Structure

20.26Crooks CS162 © UCB Fall 2023

File Attributes

User
Group
9 basic access control bits
 - UGO x RWX
SetUID bit
 - execute at owner
permissions
 rather than user
SetGID bit
 - execute at group’s
permissions

20.27Crooks CS162 © UCB Fall 2023

Direct Pointers
Direct pointers

4kB blocks ⇒
sufficient for
files up to 48KB

20.28Crooks CS162 © UCB Fall 2023

Indirect Pointers

48 KB

+4 MB

+4 GB

+4 TB

Indirect pointers
point to a disk
block containing
only pointers

20.29Crooks CS162 © UCB Fall 2023

Indirect Pointers

Assume 4KB blocks

What is the maximum size of a file with only direct
pointers?

12 * 4 KB = 48 KB

What is the maximum size of a file with one indirect
pointer?

12 * 4 KB + 1024 * 4KB = 4.1MB

What is the maximum size of a file with double
indirect pointers?

12 * 4KB + 1024 * 4KB + 1024 * 1024 * 4KB =
4.6 GB

20.30Crooks CS162 © UCB Fall 2023

Inodes form an on-disk index

Sample file in multilevel
indexed format:

– 12 direct ptrs, 4K blocks

– How many accesses for
block #23? (assume file
header accessed on open)?
» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,
indirect block, and data

20.31Crooks CS162 © UCB Fall 2023

Creating new files

Inodes are (logically) stored in an inode table

File system stores a bitmap of free inodes and
free blocks

On creating a new file,
1) Check which inode is free/where that inode

is stored
2) Check which data blocks are free

20.32Crooks CS162 © UCB Fall 2023

Putting it together

/cs162/natacha.txt (60KB)
/cs162/natasha.txt (4KB)

Each block is 4KB
Inode is 256 Bytes

20.33Crooks CS162 © UCB Fall 2023

Putting it together

/cs162/natacha.txt (60KB)
/cs162/natasha.txt (4KB)

Sblock

20.34Crooks CS162 © UCB Fall 2023

Putting it together

/cs162/natacha.txt (60KB)
/cs162/natasha.txt (4KB)

Sblock Inode
bitmap

Block
bitmap

20.35Crooks CS162 © UCB Fall 2023

Putting it together

/cs162/natacha.txt (60KB)
/cs162/natasha.txt (4KB)

Sblock Inode
bitmap

Block
bitmap

Inodes
0 to
15

Inodes
16 to
31

Inodes
32 to
47

Inodes
48 to
63

Inodes
64 to
79

20.36Crooks CS162 © UCB Fall 2023

Putting it together

/cs162/natacha.txt (60KB)
/cs162/natasha.txt (4KB)

Sblock Inode
bitmap

Block
bitmap

Inodes
0 to
15

Inodes
16 to
31

Inodes
32 to
47

Inodes
48 to
63

Inodes
64 to
79

20.37Crooks CS162 © UCB Fall 2023

Putting it together

/

Allocate inode 0
Create data block

Sblock Inode
bitmap

Block
bitmap

Inodes
0 to
15

Inodes
16 to
31

Inodes
32 to
47

Inodes
48 to
63

Inodes
64 to
79

20.38Crooks CS162 © UCB Fall 2023

Putting it together

/

Allocate inode 0
Create data block

Sblock 1000 1000
0000

Inodes
0 to
15

Inodes
16 to
31

Inodes
32 to
47

Inodes
48 to
63

Inodes
64 to
79

<.,0>

20.39Crooks CS162 © UCB Fall 2023

Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

Sblock 1000 1000
0000

Inodes
0 to
15

Inodes
16 to
31

Inodes
32 to
47

Inodes
48 to
63

Inodes
64 to
79

<..,-1>

20.40Crooks CS162 © UCB Fall 2023

Putting it together

/cs162

Allocate inode 1
Update direntry for /
Create data block

Sblock 1100 1100
0000

Inodes
0 to
15

Inodes
16 to
31

Inodes
32 to
47

Inodes
48 to
63

Inodes
64 to
79

<..,-1>
<cs162,1> <..,0>

20.41Crooks CS162 © UCB Fall 2023

Putting it together

/cs162/natacha.txt (60KB)
Allocate inode 3
Update direntry

Create indirect block
Create datablocks

Sblock 1101 1111
1111

Inodes
0 to
15

Inodes
16 to
31

Inodes
32 to
47

Inodes
48 to
63

Inodes
64 to
79

<..,-1>
<cs162,1>

<..,0>
<nat..,3>

Indirect
block

Data
block

Data
block

Data
block

Data
block

Data
block …

20.42Crooks CS162 © UCB Fall 2023

Unix File System (Berkeley FFS)

Introducing Disk Awareness

20.43Crooks CS162 © UCB Fall 2023

Recall: Critical Factors in File System Design
(Hard) Disk Performance !!!

Maximize sequential access, minimize seeks

Open before Read/Write
–Can perform protection checks and look up where the actual file resource are, in advance

Size is determined as they are used !!!
–Can write (or read zeros) to expand the file
–Start small and grow, need to make room

Organized into directories
–What data structure (on disk) for that?

Need to carefully allocate / free blocks
–Such that access remains efficient

20.44Crooks CS162 © UCB Fall 2023

Recall: Magnetic Disks

Cylinders: all the tracks under the
head at a given point on all surfaces

Read/write data is a three-stage process:
–Seek time: position the head/arm over the proper
track
–Rotational latency: wait for desired sector to rotate
under r/w head
–Transfer time: transfer a block of bits (sector)
under r/w head

Sector

Track

Cylinder

Head

Platter

20.45Crooks CS162 © UCB Fall 2023

Fast File System (BSD 4.2, 1984)
Same inode structure as in BSD 4.1
–same file header and triply indirect blocks like we
just studied
–Some changes to block sizes from 1024⇒4096 bytes
for performance

Optimization for Performance and Reliability:
–Distribute inodes among different tracks to be closer
to data
–Uses bitmap allocation in place of freelist
–Attempt to allocate files contiguously
–10% reserved disk space
–Skip-sector positioning (mentioned later)

20.46Crooks CS162 © UCB Fall 2023

FFS Locality: Block Groups
Distribute header information
(inodes) closer to the data
blocks, in same “cylinder group”

File system volume divided into
set of block groups

Data blocks, metadata, and free
space
interleaved within block group

Put directory and its files in
common block group

20.47Crooks CS162 © UCB Fall 2023

FFS Locality: Block Groups
First-Free allocation of new file
blocks
–To expand file, first try
successive blocks in bitmap, then
choose new range of blocks
–Few little holes at start, big
sequential runs at
end of group
–Avoids fragmentation
–Sequential layout for big files

Important: keep 10% or more free!
–Reserve space in the Block
Group

20.48Crooks CS162 © UCB Fall 2023

Attack of the Rotational Delay

Missing blocks due to rotational delay

Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed

next block! Need 1 revolution/block!

20.49Crooks CS162 © UCB Fall 2023

Attack of the Rotational Delay

Solution 1: Skip sector positioning (“interleaving”)
»Place the blocks from one file on every other
block of a track: give time for processing to
overlap rotation
»Can be done by OS or in modern drives by the
disk controller

Solution 2: Read ahead: read next block right after
first, even if application hasn’t asked for it yet
»This can be done either by OS (read ahead)
»By disk itself (track buffers) - many disk
controllers have internal RAM that allows them to
read a complete track

20.50Crooks CS162 © UCB Fall 2023

UNIX 4.2 BSD FFS
Pros
–Efficient storage for both small and large files
–Locality for both small and large files
–Locality for metadata and data
–No defragmentation necessary!

Cons
–Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)
–Inefficient encoding when file is mostly contiguous on disk
–Need to reserve 10-20% of free space to prevent
fragmentation

20.51Crooks CS162 © UCB Fall 2023

What about other file systems?

FAT:
File Allocation Table

(MS-DOS,1977)

Windows NTFS

20.52Crooks CS162 © UCB Fall 2023

File 31, Block 2File 31, Block 2

FAT (File Allocation Table)
Assume (for now) we have a
way to translate a path to
a “file number”

– i.e., a directory structure

Disk Storage is a collection of
Blocks

– Just hold file data
(offset o = < B, x >)

Example: file_read 31, < 2, x >
– Index into FAT with file number
– Follow linked list to block
– Read the block from disk
into memory

File 31, Block 0

File 31, Block 1

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

20.53Crooks CS162 © UCB Fall 2023

FAT (File Allocation Table)
File is a collection of disk
blocks

FAT is linked list 1-1 with
blocks

File number is index of root of
block list for the file

File offset: block number and
offset within block

Follow list to get block number

Unused blocks marked free
– Could require scan to find
– Or, could use a free list

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free

20.54Crooks CS162 © UCB Fall 2023

FAT (File Allocation Table)

file_write(31, < 3, y >)
–Grab free block
–Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free
File 31, Block 3

20.55Crooks CS162 © UCB Fall 2023

File 31, Block 3

FAT (File Allocation Table)

Where is FAT stored?
– On disk

How to format a disk?
– Zero the blocks, mark FAT
entries “free”

How to quick format a disk?
– Mark FAT entries “free”

Simple: can implement in
device firmware

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File #1

memory

free

File #2

20.56Crooks CS162 © UCB Fall 2023

FAT: Directories

A directory is a file containing <file_name: file_number> mappings

In FAT: file attributes are kept in directory (!!!)
– Not directly associated with the file itself

Each directory a linked list of entries
– Requires linear search of directory to find particular entry

Where do you find root directory (“/”)?
– At well-defined place on disk
– For FAT, this is at block 2 (there are no blocks 0 or 1)

20.57Crooks CS162 © UCB Fall 2023

File 31, Block 3

FAT Discussion

Suppose you start with the
file number:

• Time to find block?
• Block layout for file?
• Sequential access?
• Random access?
• Fragmentation?
• Small files?
• Big files?

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File #1

memory

free

File #2

	CS162�Operating Systems and�Systems Programming�Lecture 19���File Systems
	Recall: HDD vs. SSD Comparison
	Recall: I/O and Storage Layers
	From Storage to File Systems
	Building a File System
	Building a File System
	User vs. System View of a File
	Translation from User to System View
	Disk Management
	What Does the File System Need?
	Recall: FD & File Descriptors
	Critical Factors in File System Design
	Files & Directories
	Files & Directories
	Manipulating directories
	Components of a File System
	Components of a File System
	The (In)famous Inode
	How to get the Inode number?
	How to read a file from disk
	Characteristics of Files
	Observation #1: Most Files Are Small
	Observation #2: Most Bytes are in Large Files
	The key to it all: the Inode
	Inode Structure
	File Attributes
	Direct Pointers
	Indirect Pointers
	Indirect Pointers
	Inodes form an on-disk index
	Creating new files
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Putting it together
	Unix File System (Berkeley FFS)
	Recall: Critical Factors in File System Design
	Recall: Magnetic Disks
	Fast File System (BSD 4.2, 1984)
	FFS Locality: Block Groups
	FFS Locality: Block Groups
	Attack of the Rotational Delay
	Attack of the Rotational Delay
	UNIX 4.2 BSD FFS
	What about other file systems?
	FAT (File Allocation Table)
	FAT (File Allocation Table)
	FAT (File Allocation Table)
	FAT (File Allocation Table)
	FAT: Directories
	FAT Discussion

