C5S162

Operating Systems and
Systems Programming
Lecture 2

Protection: Processes and Kernels

Professor Natacha Crooks

https://csl62.org/

Slides based on prior slide decks from David Culler, lon Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

Admistratrivia

Crooks CS162 © UCB Fall 2023

2.2

Homework and Early Drop Deadline

HW0O Due 31/8

Should be working on Homework O already!

cslo2-xx account, Github accountVagrant and
VirtualBox - VM environment for the course

» Consistent, managed environment on Yyour machine

Get familiar with all the c¢sl62 tools, submit to
autograder via git

Crooks CS162 © UCB Fall 2023

2.3

Homework and Early Drop Deadline

HWQO Due 1/9 (Same Day as Early Drop Deadline)

Should be working on Homework O already!

Get familiar with all the c¢sl62 tools, submit to
autograder via git

HW1 will be released on 2/9

Crooks CS162 © UCB Fall 2023

2.4

Projects are looming

Group Formation Form (Link on EdStem) is due 2/9.
There is a teammate search functionality on EdStem.

Discussions are starting! First 2 optional but mandatory
afterwards

Project O will be released on 9/4

Crooks CS162 © UCB Fall 2023

2.5

Recall: Operating System

An operating system implements a virtual machine for
the application whose interface is more convenient than
the raw hardware interface
(convenient security, reliability, portability)

Application 1| Application 2| Application 3 |

r

Operating System J

: Hardware]

Crooks CS162 © UCB Fall 2023 2.6

Recall: Three main hats

2
Referee Illusionist Glue
Manage protection, Provide clean, proyides a set of
isolation, and sharing easy-to-use cOmmon services
of resources abstractions of

physical resources

Crooks CS162 © UCB Fall 2023 2.7

Recall: HW Complex

Memory Channels
(High BW DRAM)

Really High Speed
1/0 (e.g. graphics)

Intel®

Core™ X-serics
Processor Rl -----=
Family

“ Dlr Media Interface

(3.93 GBytes/sec)

High-Speed 1/0

devices (PCl Exp)

HD Audio

Disks (8 x SATA)

PCl/e Drives

Intel® X299

Chipset

Slower 1/0 (USB)

RAID 0/1/5/10
Technology with RAID

Integrated Ethernet

Intel® Smart Cannect Smart Connect
Technodo
citlin, i (autoupdate)
B

Intel® Extrerne Tuning
Litdity Suppart

Intel Skylake-X I/O Configuration

Crooks CS162 © UCB Fall 2023

2.8

Recall: Increasing Software Complexity

Original Unix

Linux 2.2.0 (2000)
Mars Curiosity Rover
Firefox

Android

Linux 3.1 (2005)
Linux 5.6 (2020)
Windows 7
Microsoft Office 2013
Windows Vista
Facebook

Mac OS X "Tiger"
Modern Car

Mouse Base Pairs

20 40 60

Crooks CS162 © UCB Fall 2023

80

100

120

140

2.9

Topic Breakdown

Process Abstraction and API]

[Virtualizing the CPU] ! ThreadSSaEddConcurrency
- cheduling

r Virtual Memor
| Virtualizing Memory | - 4

Paging

10 devices

| Persistence |

File Systems

| Challenges with distribution |
| Distributed Systems | (

Data Processing & Storage]

Crooks CS162 © UCB Fall 2023 2.10

Mechanisms vs Policy

-

_

Mechanism

Low-level methods or
protocols that
implement a needed
piece of functionality

~

/

A Brake Pedall

-

_

decisions within the

Policy

Algorithms for makin

Use the mechanism.

~

OS.

/

“l break when | see a stop sign”

Crooks CS162 © UCB Fall 2023

2.11

Goals for Today

« What are the requirements of a good VM abstraction?
e What is a ?
e How does the use processes to enforce protection?

e When does one switch from to and back?

Crooks CS162 © UCB Fall 2023 2.12

Goal 1: Requirements for Virtualization

Crooks CS162 © UCB Fall 2023 2.13

The OS will protect you

Protection is necessary to preserve the
virtualization abstraction

FProtect applications from other application’s code
(reliability, security, privacy)

Protect OS from the application
Protect applications against inequitable resource

utilisation
(memory, CPU time)

Crooks CS162 © UCB Fall 2023 2.14

Goal 2: What is a Process?

Crooks CS162 © UCB Fall 2023 2.15

A process (simplified)

" CPU |

A process is an instance of a running program

reglsters

Crooks CS162 © UCB Fall 2023

\

g Memory . Registers 1(| 10
(address space) information
N) U N
Store code, Program Open files
data, stack, Counter, (and others)
heap Stack
Pointer
Regular

2.16

From program to process

lu Executable image,

int main()

: instructions and
("Hello 1-'.'-'_1|'-1d":l;| data

./helloworld

crooks@laptop> ./helloworld crooks@laptop> ./helloworld

Physical Memory

File Options View

Frocesses performance App history Startup Users Details Services

5% ¢ 50% 1% 0% 2%
Mame Status CRU Memory Crisk Matwor GPFU | GPU enging Powear Usage Power usage tr..
’ G Google Chrame (41} 0.9% 33909 MEB 0.1 ME/Ss 0.1 Mbps 1.7% GPU D - Video Decode Wery low Very low
* Iy Microsoft PowerPoint (2) 0.1% 7351 MB 0 ME/fs 0.1 Mbps 0% Wery low Wery low

&= Slack (6] 0% 4132 MB 0 MEfs 0.1 Mbps 0% Wery low Vary low

Process Life Cycle

A process can be in one of several states:
(real OSes have additional variants)

Descheduled

oy
Scheduled
Finish /O

Crooks CS162 © UCB Fall 2023 2.18

Request 1/0

Process Management by the QS

Process Control Block (or process descriptor)
in OS stores necessary metadata

-~

_

PC
Stack Ptr

Registers
PID

UID

Process State

~

List of open files

/

Crooks CS162 © UCB Fall 2023

2.19

Three “Prongs” for the Class

principles Programming

L Understanding OS } L System }

Map Concepts to
Real Code

Crooks CS162 © UCB Fall 2023 2.20

Processes in the wild (well, in the

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

// Per-process state

struct proc {
uint sz; Size of process memory (bytes)
pde_ t* pgdir; Page table
char *kstack; Bottom of kernel stack for this process
enum procstate state; Process state
int pid; Process ID
struct proc *parent; Parent process
struct trapframe *tf; Trap frame for current syscall
struct context *context; swtch () here to run process
void *chan; If non-zero, sleeping on chan
int killed; If non-zero, have been killed
struct file *ofile[NOFILE] ; Open files
struct inode *cwd; Current directory

char name[1l6]; Process name (debugging) In Linux: task struct

defined In
<linux/sched.h>

Xv6 Kernel (proc.h)

Crooks CS162 © UCB Fall 2023

Processes in Pintos

struct process {
/* Owned by process.c. */
uint32 t* pagedir; /* Page directory. */
char process name[16]; /* Name of the main thread */
struct thread* main thread; /* Pointer to main thread */

/* All the fun data structures you’re going to add */

Pintos
(userprog/process.h)

Crooks CS162 © UCB Fall 2023 2.22

Many Processes

stores all processes

struct {
struct spinlock 1lock;

struct proc proc[NPROC] ;
} ptable;

Xv6 Kernel (proc.c)

Run Queues Wait Queues

| . Lists all PCBs in
LlslgjE AaélYPgEtSe in BLOCKED state

Crooks CS162 © UCB Fall 2023 2.23

The Illusionist and the Referee are Back

L

Illusionist Referee
Give every process the Manage resources to
illusion of running on allocate to each
a private CP pProcess
Give every process the Isolate process from
illusion of running on all other processes and

private memory protect OS

Crooks CS162 © UCB Fall 2023 2.24

Operating System Kernel

SPECIAL '

Kernel is with to all hardware capabilities

Lowest level of OS running on system.

All other software (OS or applications) is considered

Applications

Rest of QS
Trusted Operating System Kernel

Untrusted

Untrusted Hardware

Crooks CS162 © UCB Fall 2023 2.25

The Process, Refined

A executing

Process

OS

Hardware

Enforcing mechanism must not hinder functionality or

program with restricted rights

Process

OS

Hardware

hurt performance

Crooks CS162 © UCB Fall 2023

Process

OS

Hardware

2.26

User vs Kernel: Dr Jekyll and Mr Hyde

Application/User Code

(Untrusted)
Runs directly on
Run all the processor processor with
with all potentially unlimited rights
dangerous operations
disabled

Performs any
hardware operations

But run on the same machinel

Crooks CS162 © UCB Fall 2023

Kernel Code (Trusted)

2.27

How can the kernel enforce restricted rights?

1) While preserving 2) While preserving
functionality performance

3) While preserving
control

Crooks CS162 © UCB Fall 2023 2.28

Attempt 1: Simulation

Crooks CS162 © UCB Fall 2023 2.29

Recall: CPU Instruction Cycle (from CS61c)

Processor

Instruction fetch

Decode

Execute

Memory
[next lE
PC:
| instruction
[decode]
v
Registers
\ ALU /
| data

Crooks CS162 © UCB Fall 2023

2.30

Attempt 1: Simulation

Process Have the Kernel
0% interpret and check

: e every instruction!
[Hardware]4_/"

Potential Issues:

Extremely slow! Would have to cycle through all operations,
switch into the kernel, etc.

Y
A

Unnecessary. Most operations are perfectly safel

Crooks CS162 © UCB Fall 2023 2.31

Attempt 2: Dual Mode Operation

Hardware to the rescuel
Use a bit to enable two modes of execution

In User Mode In Kernel Mode 7

Processor checks each OS executes with

instruction before protection checks off
executing it

o Can execute any
Executes a limited instructions

(safe) set of
instructions

Crooks CS162 © UCB Fall 2023 2.32

Hardware must support

1) Privileged Instructions 2) Memory Isolation
Unsafe instructions Memory accesses
cannot be executed in outside a process'’s
user mode address space prohibited
3) Interrupts 4) Safe Transfers
Ensure kernel can Correctly transfer control
regain control from from user-mode to kernel-

running process mode and back

Crooks CS162 © UCB Fall 2023 2.33

Req 1/4: Privileged Instructions

Cannot change privilege level (set mode bit)
Cannot change address space
Cannot disable interrupts
Cannot perform 1O operations

Cannot halt the processor

Crooks CS162 © UCB Fall 2023

2.34

How can an application do anything useful

Asks for permission to access kernel model

Transition from user to kernel mode
only at specific locations specified by the QS

User mode code attempts to execute a
privileged exception. Generates a processor exception
which passes control to kernel at specific locations

More on safe control transfers later

Crooks CS162 © UCB Fall 2023

2.35

Hardware must support

-

1) Privileged Instructions 2) Memory Isolation
Unsafe instructions Memory accesses
cannot be executed in outside a process’s
user mode \address space prohibited
3) Interrupts 4) Safe Transfers
Ensure kernel can Correctly transfer control
regain control from from user-mode to kernel-

running process mode and back

Crooks CS162 © UCB Fall 2023 2.36

Req 2/4: Memory Protection

OS and applications both resident in memory

Application should not read/write kernel memory
(or other apps memory)

Crooks CS162 © UCB Fall 2023 2.37

A Bug’'s Tail

The character could leave the game area and start
overwriting other running programs and kernel memory.

One of the worst bugs | ever had to deal with was in this game. Once the game player made it to the Colony,
every so often the system would crash and burn at totally random times. You might be playing for ten
minutes when it happened or ten hours, but it would just die in a totally random way

There was a slow-moving slug like creature that knew how to follow the game player’s trail. When it came
across another creature, rather than bouncing off and risk losing the trail, | made it so that it would destroy
the other creature and stay on target to find you. This worked great, except that on some rare occasions,
this slug could do to a wall what it did to the other creatures. That is, it could delete it. This meant that the
virtual door was now open for this creature to explore the rest of the RAM on the Macintosh, deleting and
modifying it as it went along. Of course, it was just a matter of time before it found some juicy code. In other
words, the bug was a REAL bug.

Crooks CS162 © UCB Fall 2023 2.38

Super Mario Land 2

Mario could exit a level and explore the entire memory
of the system

e

Memory Exploration

ey
L

EXPLAINEDE —

Crooks CS162 © UCB Fall 2023 2.39

Attempt 1: Isolation

Hardware to the rescuel (Again)
and registers

.

Base ' Base |

Bound Bound

Address Space Address Space
Process 1 Process 2

Crooks CS162 © UCB Fall 2023 2.40

Attempt 1: Isolation

Hardware to the rescuel (Again)
and registers

Memory

Reference Yes

Continue

Generate
Exception

Crooks CS162 © UCB Fall 2023 2.41

Attempt 1: Isolation

Kernel Mode executes without
and registers

What can the Kernel see?

a) Kernel memory only

b) Kernel memory + application memory of app that
“invoked” kernel
c) Everything

Crooks CS162 © UCB Fall 2023 2.42

Limitations of Isolation

1) Expandable memory 2) Memory Sharing
Static memory Cannot share memory
allocation between processes
3) Non-Relative Memory 4) Fragmentation
Addresses Cannot relocate/move
Location of code & pro?rams. Leads to
data determined at ragmentation

runtime

Crooks CS162 © UCB Fall 2023 2.43

Attempt 2: Virtualization

Virtual address space Physical address space

Set of memory addresses that Set of memory addresses
process can “touch” supported by hardware

Crooks CS162 © UCB Fall 2023 2.44

Attempt 2: Virtualization

Map from virtual addresses to physical addresses
through

Pid, Physical Memory
Virtual Memory Address
Address

Crooks CS162 © UCB Fall 2023 2.45

Attempt 2: Virtualization

Continues to provide isolation

Process 1,

Virtual Memory

Address

Process 2,

Virtual Memory
Address

—

Crooks CS162 © UCB Fall 2023

Physical Memory
for Pl

Physical Memory
for P2

2.46

Benefits of Virtualization

1) Expandable memory 2) Memory Sharing
Whole space of virtual Same virtual address
address space! Even can map to same
physical address not physical address

resident in memory

3) Relative Memory 4) Fragmentation
Addresses Can dynamically change
Every process’s memory mapping of wvirtual to

always starts at 0 physical addresses

Crooks CS162 © UCB Fall 2023 2.47

What does this program do? (CS61C)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

crooks@laptop> gcc —o memory memory.c -Wall
crooks@laptop> ./memory
(120) p: 0x200000

int main(int argc, char *argv[]) { (120) p: 1
int *p = malloc(sizeof (int)) ; (120) p: 2
printf (" (%d) p: %p\n", getpid(), p): (120) p: 3
*P = 0; 120) p: 4
while (1) { () P

*p = *p + 1; crooks@laptop> ./memory & ./memory

printf (" (%d) p: %d\n", getpid(), *p); (120) p: 0x200000
} (254) p: 0x200000

return 0;

Are these virtual or physical addresses?

Virtual memory provides each process with illusion
of own complete (and infinite) memory

Crooks CS162 © UCB Fall 2023 2.48

Virtual Memory is Hard!

Process Abstraction and API]

[Virtualizing the CPU] ! ThreadSSaEddConcurrency
- cheduling

] Virtual Memory

[Virtualizing Memory

Paging

10 devices

| Persistence |

File Systems

| Challenges with distribution |
| Distributed Systems | (

Data Processing & Storage]

Crooks CS162 © UCB Fall 2023 2.49

Hardware must support

1) Privileged Instructions 2) Memory Isolation

Unsafe instructions Memory accesses

cannot be executed in outside a process’s

user mode address space prohibited

a 3) Interrupts) 4) Safe Transfers
Ensure kernel can Correctly transfer control
regain control from from user-mode to kernel-

running process mode and back

N\ J

Crooks CS162 © UCB Fall 2023 2.50

Req 3/4: Interrupts

Kernel must be able to of the
processor

Hardware to the rescuel (Again x 2)

Set to interrupt processor after a specified delay or
specified event and transfer control to (specific
locations) in Kernel.

Resetting timer is a privileged operation

Crooks CS162 © UCB Fall 2023

2.51

Hardware must support

1) Privileged Instructions 2) Memory Isolation
Unsafe instructions Memory accesses
cannot be executed in outside a process'’s
user mode address space prohibited
4)
3) Interrupts 4) Safe Transfers
Ensure kernel can Correctly transfer control
regain control from from user-mode to kernel-
running process . mode and back y

Crooks CS162 © UCB Fall 2023 2.52

Req 4/4: Safe Control Transfer

How do safely/correctly transition from executing user
process to executing the kernel?

1) System Calls 2) Exceptions 3) Interrupts

Asynchronous

Can be maskable or
non-maskable

Synchronous Events
(trapping)

Crooks CS162 © UCB Fall 2023 2.53

Safe Control Transfer: System Calls

User program requests OS service
Transfers to kernel at well-defined location

Synchronous/non-maskable

Read input/write to screen, to files, create new processes, send
network packets, get time, etc.

How many system calls in Linux 3.0 7

a) 15 b) 336 ¢) 1021 d) 21121

https://man/.org/linux/man-pages/man2/syscalls.2.html

Crooks CS162 © UCB Fall 2023 2.54

System Calls are the “Narrow Waste”

Simple and powerful interface allows separation of concern

Eases innovation in user space and HW

Word Processing
Compilers Web Browsers

Email

Web Servers

Databases Application / Service

Portable OS Library OS

System Call
Interface

Portable OS Kernel

User

System

Software Platform support, Device Drivers

Hardware x86 PowerPC ARM \
PC

Ethernet (1Gbs/10Gbs) ~ 802.11 a/g/n/ac SCSI Graphics Thunderbolt
Crooks CS162 © UCB Fall 2023 2.55

System Calls in the Wild (In Linux

& torvalds / linux ' Public

<{> Code

§9 Pull requests

O A7 ~

I8

® Actions [Projects @ Security [~2 Insights

linux / arch / x86 / entry / syscalls / syscall_64.tbl

Dominik Brodowski syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to _... ...

A 7 contributors

386 lines (385 sloc)

W 00 N OO R W R

BB R R R R R R R R
W W NV A WN R

0 N oV kR W N RO H OH H W O H O K OH H

15.2

P8 O

KB

64-bit system call numbers and entry vectors

The format is:

<number> <abi> <name> <entry point>

The __x64_sys_*() stubs are created on-the-fly for sys_*() system calls

The abi is "common", "e4" or "x32" for this file.

common

common

common

common

common

common

common

common

common

read
write
open
close
stat
fstat
Istat
poll

lseek

_ x64_sys_read
__X64_sys_write
__X64_sys_open
__x64_sys_close

_ X64_sys_newstat
__x64_sys_newfstat
__X64_sys_newlstat
__x64_sys_poll

__x64_sys_lseek

Crooks CS162 © UCB Fall 2023

Q Notifications

Latest commit dsaees2 on Apr 9, 2018 O History

Raw

% Fork 44.2k

Blame

Go to file

Y7 Star 137k

2.56

Safe Control Transfer: Exceptions

Any caused by user program behaviour

Stop executing process and enter kernel at specific

Synchronous and non-maskable

Process missteps (division by zero, writing read-only memory)
Attempts to execute a privileged instruction in user mode
Debugger breakpoints!

Crooks CS162 © UCB Fall 2023

2.57

Exceptions in the Wild (In Linux

& torvalds / linux (Public

<> Code

19 Pullrequests 313 (® Actions

3 Projects @ Security | Insights

¥ master v linux / arch / x86 / include / asm / trapnr.h

’, joergroedel x86/boot/compressed/64: Add stage1 #VC handler ...

A 1 contributor

32 lines (29 sloc) 1.29 KB

*

/

3

/
/
/
/%
/
/
/

¥

*

W KNV AW N RO
PR

*

=
®

/
/
/
/

._\
[
¥

=
N
*

i
w
*

1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_TRAPNR_H
3 #define _ASM_X86_TRAPNR_H
4

5 /* Interrupts/Exceptions */
6

7 #define X86_TRAP_DE

8 #define X86_TRAP_DB

9 #define X86_TRAP_NMI

16 #define X86_TRAP_BP

11 #define X86_TRAP_OF

12 #define X86_TRAP_BR

13 #define X86_TRAP_UD

14 #define X86_TRAP_NM

15 #define X86_TRAP_DF

16 #define X86_TRAP_OLD_MF
17 #define X86_TRAP_TS

18 #define X86_TRAP_NP

19 #define X86_TRAP_SS

20 #define X86_TRAP_GP

21

#define X86_TRAP_PF

*

=
IS

/

Divide-by-zero */

Debug */

Non-maskable Interrupt */
Breakpoint */

Overflow */

Bound Range Exceeded */
Invalid Opcode */

Device Not Available */
Double Fault */

Coprocessor Segment Overrun */
Invalid TSS */

Segment Not Present */
Stack Segment Fault */
General Protection Fault */

Page Fault */

Crooks CS162 © UCB Fall 2023

Q Notifications

Latest commit 29dccee on Sep 7, 2020 D) History

Raw

% Fork 443k

Blame

Go to file

¢ star 137k

2.58

Safe Control Transfer: Interrupts

Asynchronous signal to the processor that some external
event has occurred and may require attention

When process interrupt, stop current process and enter
kernel at designated

Timer Interrupts, IO Interrupts, Interprocessor Interrupts

Crooks CS162 © UCB Fall 2023

2.59

Safe Control Transfer: Kernel->User

New Process Creation
Kernel instantiates datastructures, sets registers, switches to
user mode

Resume after an exception/interrupt/syscall
Resume execution by restoring PC, registers, and unsetting
mode

Switching to a different process

Save old process state. Load new process state (restore
PC, registers). Unset mode.

Crooks CS162 © UCB Fall 2023 2.60

Summary: Goals for today

e What are the requirements
of a good VM abstraction?

e What is a process?

e How does the kernel use
processes to enforce
protection?

e When does one switch
from kernel to user mode
and back?

Crooks CS162 © UCB Fall 2023 2.61

Summary: Goals for today

e What are the requirements
of a good VM abstraction?

e What is a process?

e How does the kernel use
processes to enforce
protection?

e When does one switch
from kernel to user mode
and back?

Protection while preserving
functionality and performance

Program execution with
restricted rights

Dual-Mode operation: privileged
Instructions, memory protection,
control, interrupts, safe control
transfer

System Calls, Interrupts,
Exceptions

Crooks CS162 © UCB Fall 2023 2.62

	CS162�Operating Systems and�Systems Programming�Lecture 2��Protection: Processes and Kernels��
	Admistratrivia
	Homework and Early Drop Deadline
	Homework and Early Drop Deadline
	Projects are looming
	Recall: Operating System
	Recall: Three main hats
	Recall: HW Complex
	Recall: Increasing Software Complexity
	Topic Breakdown
	Mechanisms vs Policy
	Goals for Today
	Goal 1: Requirements for Virtualization
	The OS will protect you
	Goal 2: What is a Process?
	A process (simplified)
	From program to process
	Process Life Cycle
	Process Management by the OS
	Three “Prongs” for the Class
	Processes in the wild (well, in the kernel)
	Processes in Pintos
	Many Processes
	The Illusionist and the Referee are Back
	Operating System Kernel
	The Process, Refined
	User vs Kernel: Dr Jekyll and Mr Hyde
	How can the kernel enforce restricted rights?
	Attempt 1: Simulation
	Recall: CPU Instruction Cycle (from CS61c)
	Attempt 1: Simulation
	Attempt 2: Dual Mode Operation
	Hardware must support
	Req 1/4: Privileged Instructions
	How can an application do anything useful …
	Hardware must support
	Req 2/4: Memory Protection
	A Bug’s Tail
	Super Mario Land 2
	Attempt 1: Isolation
	Attempt 1: Isolation
	Attempt 1: Isolation
	Limitations of Isolation
	Attempt 2: Virtualization
	Attempt 2: Virtualization
	Attempt 2: Virtualization
	Benefits of Virtualization
	What does this program do? (CS61C)
	Virtual Memory is Hard!
	Hardware must support
	Req 3/4: Interrupts
	Hardware must support
	Req 4/4: Safe Control Transfer
	Safe Control Transfer: System Calls
	System Calls are the “Narrow Waste”
	System Calls in the Wild (In Linux)
	Safe Control Transfer: Exceptions
	Exceptions in the Wild (In Linux)
	Safe Control Transfer: Interrupts
	Safe Control Transfer: Kernel->User
	Summary: Goals for today
	Summary: Goals for today

