
CS162
Operating Systems and
Systems Programming

Lecture 2
Protection: Processes and Kernels

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

2.2Crooks CS162 © UCB Fall 2023

Admistratrivia

2.3Crooks CS162 © UCB Fall 2023

Homework and Early Drop Deadline

HW0 Due 31/8

Should be working on Homework 0 already!

cs162-xx account, Github accountVagrant and
VirtualBox – VM environment for the course

» Consistent, managed environment on your machine

Get familiar with all the cs162 tools, submit to
autograder via git

2.4Crooks CS162 © UCB Fall 2023

Homework and Early Drop Deadline

HW0 Due 1/9 (Same Day as Early Drop Deadline)

Should be working on Homework 0 already!

Get familiar with all the cs162 tools, submit to
autograder via git

HW1 will be released on 2/9

2.5Crooks CS162 © UCB Fall 2023

Projects are looming

Group Formation Form (Link on EdStem) is due 2/9.

There is a teammate search functionality on EdStem.

Discussions are starting! First 2 optional but mandatory
afterwards

Project 0 will be released on 9/4

2.6Crooks CS162 © UCB Fall 2023

Recall: Operating System

Application 1 Application 2 Application 3
Operating System

Hardware

An operating system implements a virtual machine for
the application whose interface is more convenient than

the raw hardware interface
(convenient = security, reliability, portability)

2.7Crooks CS162 © UCB Fall 2023

Recall: Three main hats

Referee
Manage protection,
isolation, and sharing

of resources

Illusionist
Provide clean,
easy-to-use

abstractions of
physical resources

Glue
Provides a set of
common services

2.8Crooks CS162 © UCB Fall 2023

Recall: HW Complex

Intel Skylake-X I/O Configuration

Direct Media Interface
(3.93 GBytes/sec)

Really High Speed
I/O (e.g. graphics)

Memory Channels
(High BW DRAM)

High-Speed I/O
devices (PCI Exp)

Disks (8 x SATA)

Slower I/O (USB)

Integrated Ethernet

PCI/e Drives

HD Audio

RAID 0/1/5/10

Smart Connect
(autoupdate)

2.9Crooks CS162 © UCB Fall 2023

Recall: Increasing Software Complexity

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 5.6 (2020)

Linux 3.1 (2005)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0 (2000)

Original Unix

2.10Crooks CS162 © UCB Fall 2023

Topic Breakdown

Virtualizing the CPU

Process Abstraction and API
Threads and Concurrency

Scheduling

Virtualizing Memory Virtual Memory
Paging

Persistence
IO devices
File Systems

Distributed Systems
Challenges with distribution
Data Processing & Storage

2.11Crooks CS162 © UCB Fall 2023

Mechanisms vs Policy

Mechanism

Low-level methods or
protocols that

implement a needed
piece of functionality

Policy

Algorithms for making
decisions within the OS.
Use the mechanism.

A Brake Pedal! “I break when I see a stop sign”

2.12Crooks CS162 © UCB Fall 2023

Goals for Today

• What are the requirements of a good VM abstraction?

• What is a process?

• How does the kernel use processes to enforce protection?

• When does one switch from kernel to user mode and back?

2.13Crooks CS162 © UCB Fall 2023

Goal 1: Requirements for Virtualization

2.14Crooks CS162 © UCB Fall 2023

The OS will protect you

Protect applications from other application’s code
(reliability, security, privacy)

Protect OS from the application

Protect applications against inequitable resource
utilisation

(memory, CPU time)

O
S

Protection is necessary to preserve the
virtualization abstraction

2.15Crooks CS162 © UCB Fall 2023

Goal 2: What is a Process?

2.16Crooks CS162 © UCB Fall 2023

A process (simplified)

A process is an instance of a running program

Memory
(address space)

CPU Registers IO
information

Store code,
data, stack,

heap
Program
Counter,
Stack
Pointer
Regular
registers

Open files
(and others)

2.17Crooks CS162 © UCB Fall 2023

From program to process
Executable image,
instructions and

data

./helloworld

Physical Memory
Code Data Heap Stack Code Data Heap Stack

crooks@laptop> ./helloworld crooks@laptop> ./helloworld

2.18Crooks CS162 © UCB Fall 2023

Process Life Cycle

A process can be in one of several states:
(real OSes have additional variants)

Running Ready

Blocked
Request I/O Finish I/O

Descheduled

Scheduled
Dying

2.19Crooks CS162 © UCB Fall 2023

Process Management by the OS

Process Control Block (or process descriptor)
in OS stores necessary metadata

PC
Stack Ptr
Registers
 PID
UID

List of open files
Process State

…

2.20Crooks CS162 © UCB Fall 2023

Three “Prongs” for the Class

Understanding OS
principles

System
Programming

Map Concepts to
Real Code

2.21Crooks CS162 © UCB Fall 2023

Processes in the wild (well, in the kernel)

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

// Per-process state
struct proc {
 uint sz; // Size of process memory (bytes)
 pde_t* pgdir; // Page table
 char *kstack; // Bottom of kernel stack for this process
 enum procstate state; // Process state
 int pid; // Process ID
 struct proc *parent; // Parent process
 struct trapframe *tf; // Trap frame for current syscall
 struct context *context; // swtch() here to run process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 char name[16]; // Process name (debugging)
};

Xv6 Kernel (proc.h)

In Linux: task_struct
defined in

<linux/sched.h>

2.22Crooks CS162 © UCB Fall 2023

Processes in Pintos

struct process {
 /* Owned by process.c. */
 uint32_t* pagedir; /* Page directory. */
 char process_name[16]; /* Name of the main thread */
 struct thread* main_thread; /* Pointer to main thread */

 /* All the fun data structures you’re going to add */
};

Pintos
(userprog/process.h)

2.23Crooks CS162 © UCB Fall 2023

Many Processes

Process List stores all processes

Run Queues

Lists all PCBs in
READY state

Wait Queues

Lists all PCBs in
BLOCKED state

struct {
 struct spinlock lock;
 struct proc proc[NPROC];
} ptable;

Xv6 Kernel (proc.c)

2.24Crooks CS162 © UCB Fall 2023

The Illusionist and the Referee are Back

Illusionist

Give every process the
illusion of running on

a private CPU

Give every process the
illusion of running on

private memory

Referee

Manage resources to
allocate to each

process

Isolate process from
all other processes and

protect OS

2.25Crooks CS162 © UCB Fall 2023

Operating System Kernel

Lowest level of OS running on system.
Kernel is trusted with full access to all hardware capabilities

All other software (OS or applications) is considered untrusted

Hardware

Operating System Kernel
Rest of OS
Applications

Untrusted

Trusted

Untrusted

2.26Crooks CS162 © UCB Fall 2023

The Process, Refined

A executing program with restricted rights

Enforcing mechanism must not hinder functionality or
hurt performance

Process

OS

Hardware

Process

OS

Hardware

Process

OS

Hardware

2.27Crooks CS162 © UCB Fall 2023

User vs Kernel: Dr Jekyll and Mr Hyde

Kernel Code (Trusted)

Runs directly on
processor with
unlimited rights

Performs any
hardware operations

Application/User Code
(Untrusted)

Run all the processor
with all potentially
dangerous operations

disabled

But run on the same machine!

2.28Crooks CS162 © UCB Fall 2023

How can the kernel enforce restricted rights?

1) While preserving
functionality

2) While preserving
performance

3) While preserving
control

2.29Crooks CS162 © UCB Fall 2023

Attempt 1: Simulation

2.30Crooks CS162 © UCB Fall 2023

Recall: CPU Instruction Cycle (from CS61c)

PC:
Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

2.31Crooks CS162 © UCB Fall 2023

Attempt 1: Simulation

Process

OS

Hardware

Have the Kernel
interpret and check
every instruction!

Potential Issues:
Extremely slow! Would have to cycle through all operations,

switch into the kernel, etc.

Unnecessary. Most operations are perfectly safe!

2.32Crooks CS162 © UCB Fall 2023

Attempt 2: Dual Mode Operation

Hardware to the rescue!
Use a bit to enable two modes of execution

In User Mode

Processor checks each
instruction before
executing it

Executes a limited
(safe) set of
instructions

In Kernel Mode

OS executes with
protection checks off

Can execute any
instructions

2.33Crooks CS162 © UCB Fall 2023

Hardware must support

1) Privileged Instructions
Unsafe instructions

cannot be executed in
user mode

2) Memory Isolation
Memory accesses
outside a process’s

address space prohibited

3) Interrupts
Ensure kernel can
regain control from
running process

4) Safe Transfers
Correctly transfer control
from user-mode to kernel-

mode and back

2.34Crooks CS162 © UCB Fall 2023

Req 1/4: Privileged Instructions

Cannot change privilege level (set mode bit)

Cannot change address space

Cannot disable interrupts

Cannot perform IO operations

Cannot halt the processor

2.35Crooks CS162 © UCB Fall 2023

How can an application do anything useful …

Asks for permission to access kernel mode!

System calls Transition from user to kernel mode
only at specific locations specified by the OS

Exceptions User mode code attempts to execute a
privileged exception. Generates a processor exception
which passes control to kernel at specific locations

More on safe control transfers later

2.36Crooks CS162 © UCB Fall 2023

Hardware must support

1) Privileged Instructions
Unsafe instructions

cannot be executed in
user mode

2) Memory Isolation
Memory accesses
outside a process’s

address space prohibited

3) Interrupts
Ensure kernel can
regain control from
running process

4) Safe Transfers
Correctly transfer control
from user-mode to kernel-

mode and back

2.37Crooks CS162 © UCB Fall 2023

Req 2/4: Memory Protection

OS and applications both resident in memory

Application should not read/write kernel memory
 (or other apps memory)

2.38Crooks CS162 © UCB Fall 2023

A Bug’s Tail

The character could leave the game area and start
overwriting other running programs and kernel memory.

One of the worst bugs I ever had to deal with was in this game. Once the game player made it to the Colony,
every so often the system would crash and burn at totally random times. You might be playing for ten

minutes when it happened or ten hours, but it would just die in a totally random way

There was a slow-moving slug like creature that knew how to follow the game player’s trail. When it came
across another creature, rather than bouncing off and risk losing the trail, I made it so that it would destroy
the other creature and stay on target to find you. This worked great, except that on some rare occasions,
this slug could do to a wall what it did to the other creatures. That is, it could delete it. This meant that the
virtual door was now open for this creature to explore the rest of the RAM on the Macintosh, deleting and

modifying it as it went along. Of course, it was just a matter of time before it found some juicy code. In other
words, the bug was a REAL bug.

2.39Crooks CS162 © UCB Fall 2023

Super Mario Land 2

Mario could exit a level and explore the entire memory
of the system

2.40Crooks CS162 © UCB Fall 2023

Attempt 1: Isolation

Hardware to the rescue! (Again)
Base and Bound registers

Base
Bound

Code Data Heap Stack

Address Space
Process 1

Bound

Code Data Heap Stack

Address Space
Process 2

Base

2.41Crooks CS162 © UCB Fall 2023

Attempt 1: Isolation

Hardware to the rescue! (Again)
Base and Bound registers

CPU OK?

Memory
Reference

Continue

Generate
Exception

No

Yes

2.42Crooks CS162 © UCB Fall 2023

Attempt 1: Isolation

Kernel Mode executes without
Base and Bound registers

What can the Kernel see?

a) Kernel memory only
b) Kernel memory + application memory of app that

“invoked” kernel
c) Everything

2.43Crooks CS162 © UCB Fall 2023

Limitations of Isolation

1) Expandable memory
Static memory
allocation

2) Memory Sharing
Cannot share memory
between processes

3) Non-Relative Memory
Addresses

Location of code &
data determined at

runtime

4) Fragmentation
Cannot relocate/move
programs. Leads to

fragmentation

2.44Crooks CS162 © UCB Fall 2023

Attempt 2: Virtualization

Physical address space

Set of memory addresses
supported by hardware

Virtual address space

Set of memory addresses that
process can “touch”

2.45Crooks CS162 © UCB Fall 2023

Attempt 2: Virtualization

Map from virtual addresses to physical addresses
through address translation

Pid,
Virtual Memory

Address

Physical Memory
Address

2.46Crooks CS162 © UCB Fall 2023

Attempt 2: Virtualization

Continues to provide isolation

Process 1,
Virtual Memory

Address

Physical Memory
for P1

Process 2,
Virtual Memory

Address
Physical Memory

for P2

2.47Crooks CS162 © UCB Fall 2023

Benefits of Virtualization

1) Expandable memory
Whole space of virtual
address space! Even
physical address not
resident in memory

2) Memory Sharing
Same virtual address
can map to same
physical address

3) Relative Memory
Addresses

Every process’s memory
always starts at 0

4) Fragmentation
Can dynamically change
mapping of virtual to
physical addresses

2.48Crooks CS162 © UCB Fall 2023

What does this program do? (CS61C)
crooks@laptop> gcc –o memory memory.c -Wall

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
 int *p = malloc(sizeof(int));
 printf("(%d) p: %p\n", getpid(), p);
 *p = 0;
 while (1) {
 *p = *p + 1;

printf("(%d) p: %d\n", getpid(), *p);
 }
 return 0;
}

crooks@laptop> ./memory

crooks@laptop> ./memory & ./memory
(120) p: 0x200000
(254) p: 0x200000

(120) p: 0x200000
(120) p: 1
(120) p: 2
(120) p: 3
(120) p: 4

Are these virtual or physical addresses?

Virtual memory provides each process with illusion
of own complete (and infinite) memory

2.49Crooks CS162 © UCB Fall 2023

Virtual Memory is Hard!

Virtualizing the CPU

Process Abstraction and API
Threads and Concurrency

Scheduling

Virtualizing Memory Virtual Memory
Paging

Persistence
IO devices
File Systems

Distributed Systems
Challenges with distribution
Data Processing & Storage

2.50Crooks CS162 © UCB Fall 2023

Hardware must support

1) Privileged Instructions
Unsafe instructions

cannot be executed in
user mode

2) Memory Isolation
Memory accesses
outside a process’s

address space prohibited

3) Interrupts
Ensure kernel can
regain control from
running process

4) Safe Transfers
Correctly transfer control
from user-mode to kernel-

mode and back

2.51Crooks CS162 © UCB Fall 2023

Req 3/4: Interrupts

Kernel must be able to regain control of the
processor

Set to interrupt processor after a specified delay or
specified event and transfer control to (specific

locations) in Kernel.

 Resetting timer is a privileged operation

Hardware to the rescue! (Again x 2)
Hardware Interrupts

2.52Crooks CS162 © UCB Fall 2023

Hardware must support

1) Privileged Instructions
Unsafe instructions

cannot be executed in
user mode

2) Memory Isolation
Memory accesses
outside a process’s

address space prohibited

3) Interrupts
Ensure kernel can
regain control from
running process

4) Safe Transfers
Correctly transfer control
from user-mode to kernel-

mode and back

2.53Crooks CS162 © UCB Fall 2023

Req 4/4: Safe Control Transfer

How do safely/correctly transition from executing user
process to executing the kernel?

1) System Calls 3) Interrupts2) Exceptions

Asynchronous

Can be maskable or
non-maskable

Synchronous Events
(trapping)

2.54Crooks CS162 © UCB Fall 2023

Safe Control Transfer: System Calls

User program requests OS service
Transfers to kernel at well-defined location

Synchronous/non-maskable

How many system calls in Linux 3.0 ?
a) 15 b) 336 c) 1021 d) 21121

https://man7.org/linux/man-pages/man2/syscalls.2.html

Read input/write to screen, to files, create new processes, send
network packets, get time, etc.

2.55Crooks CS162 © UCB Fall 2023

System Calls are the “Narrow Waste”

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

Simple and powerful interface allows separation of concern
 Eases innovation in user space and HW

2.56Crooks CS162 © UCB Fall 2023

System Calls in the Wild (In Linux)

2.57Crooks CS162 © UCB Fall 2023

Safe Control Transfer: Exceptions

Any unexpected condition caused by user program behaviour

Stop executing process and enter kernel at specific
exception handler

Synchronous and non-maskable

Process missteps (division by zero, writing read-only memory)
Attempts to execute a privileged instruction in user mode

Debugger breakpoints!

2.58Crooks CS162 © UCB Fall 2023

Exceptions in the Wild (In Linux)

2.59Crooks CS162 © UCB Fall 2023

Safe Control Transfer: Interrupts

Asynchronous signal to the processor that some external
event has occurred and may require attention

When process interrupt, stop current process and enter
kernel at designated interrupt handler

Timer Interrupts, IO Interrupts, Interprocessor Interrupts

2.60Crooks CS162 © UCB Fall 2023

Safe Control Transfer: Kernel->User

New Process Creation
Kernel instantiates datastructures, sets registers, switches to

user mode

Resume after an exception/interrupt/syscall
Resume execution by restoring PC, registers, and unsetting

mode

Switching to a different process
Save old process state. Load new process state (restore

PC, registers). Unset mode.

2.61Crooks CS162 © UCB Fall 2023

Summary: Goals for today

• What are the requirements
of a good VM abstraction?

• What is a process?

• How does the kernel use
processes to enforce
protection?

• When does one switch
from kernel to user mode
and back?

2.62Crooks CS162 © UCB Fall 2023

Summary: Goals for today

• What are the requirements
of a good VM abstraction?

• What is a process?

• How does the kernel use
processes to enforce
protection?

• When does one switch
from kernel to user mode
and back?

Protection while preserving
functionality and performance

Program execution with
restricted rights
Dual-Mode operation: privileged
instructions, memory protection,
control, interrupts, safe control
transfer

System Calls, Interrupts,
Exceptions

	CS162�Operating Systems and�Systems Programming�Lecture 2��Protection: Processes and Kernels��
	Admistratrivia
	Homework and Early Drop Deadline
	Homework and Early Drop Deadline
	Projects are looming
	Recall: Operating System
	Recall: Three main hats
	Recall: HW Complex
	Recall: Increasing Software Complexity
	Topic Breakdown
	Mechanisms vs Policy
	Goals for Today
	Goal 1: Requirements for Virtualization
	The OS will protect you
	Goal 2: What is a Process?
	A process (simplified)
	From program to process
	Process Life Cycle
	Process Management by the OS
	Three “Prongs” for the Class
	Processes in the wild (well, in the kernel)
	Processes in Pintos
	Many Processes
	The Illusionist and the Referee are Back
	Operating System Kernel
	The Process, Refined
	User vs Kernel: Dr Jekyll and Mr Hyde
	How can the kernel enforce restricted rights?
	Attempt 1: Simulation
	Recall: CPU Instruction Cycle (from CS61c)
	Attempt 1: Simulation
	Attempt 2: Dual Mode Operation
	Hardware must support
	Req 1/4: Privileged Instructions
	How can an application do anything useful …
	Hardware must support
	Req 2/4: Memory Protection
	A Bug’s Tail
	Super Mario Land 2
	Attempt 1: Isolation
	Attempt 1: Isolation
	Attempt 1: Isolation
	Limitations of Isolation
	Attempt 2: Virtualization
	Attempt 2: Virtualization
	Attempt 2: Virtualization
	Benefits of Virtualization
	What does this program do? (CS61C)
	Virtual Memory is Hard!
	Hardware must support
	Req 3/4: Interrupts
	Hardware must support
	Req 4/4: Safe Control Transfer
	Safe Control Transfer: System Calls
	System Calls are the “Narrow Waste”
	System Calls in the Wild (In Linux)
	Safe Control Transfer: Exceptions
	Exceptions in the Wild (In Linux)
	Safe Control Transfer: Interrupts
	Safe Control Transfer: Kernel->User
	Summary: Goals for today
	Summary: Goals for today

