
CS162
Operating Systems and
Systems Programming

Lecture 21

Reliability & Distributed Systems
Professor Natacha Crooks

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

21.2Crooks CS162 © UCB Fall 2023

Recall: File System Ideas

File Number is index into set of inode arrays

Index structure is an array of inodes

Each inode corresponds to a file and contains its
metadata

Inode maintains a multi-level tree structure to find storage
blocks for files

Original inode format appeared in BSD 4.1
Berkeley Standard Distribution Unix!

21.3Crooks CS162 © UCB Fall 2023

File System Buffer Cache

OS implements
a cache of
disk blocks for
efficient access
to data,
directories,
inodes,
freemap

Memory

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

Blocks

State free free

21.4Crooks CS162 © UCB Fall 2023

Recall: Dealing with Persistent State

Buffer Cache: write back dirty blocks periodically, even
if used recently
–Why? To minimize data loss in case of a crash
–Linux does periodic flush every 30 seconds

Not foolproof! Can still crash with dirty blocks in the
cache
–What if the dirty block was for a directory?
»Lose pointer to file’s inode (leak space)
»File system now in inconsistent state

21.5Crooks CS162 © UCB Fall 2023

Recall: Boom!

21.6Crooks CS162 © UCB Fall 2023

Happy Birthday Windows!

Happy 40th Birthday to Windows! Was first announced
on Nov 10th 1983

21.7Crooks CS162 © UCB Fall 2023

Recall: Storage Reliability Problem

Single logical file operation can involve updates to multiple
physical disk blocks
–inode, indirect block, data block, bitmap, …
–With sector remapping, single update to physical disk
block can require multiple (even lower level) updates
to sectors

At a physical level, operations complete one at a time
–Want concurrent operations for performance

How do we guarantee consistency regardless of when crash
occurs?

21.8Crooks CS162 © UCB Fall 2023

Two Reliability Approaches
Careful Ordering and

Recovery

FAT & FFS + (fsck)
Each step builds structure,

Data block ⇐ inode ⇐ free ⇐
directory

Last step links it in to rest
of FS

Recover scans structure looking
for incomplete actions

Versioning and Copy-on-Write

ZFS, …
Version files at some

granularity
Create new structure linking
back to unchanged parts of

old
Last step is to declare that
the new version is ready

21.9Crooks CS162 © UCB Fall 2023

Reliability Approach #1: Careful Ordering
Sequence operations in a specific order
–Careful design to allow sequence to be interrupted
safely

Post-crash recovery
–Read data structures to see if there were any
operations in progress
–Clean up/finish as needed

Approach taken by
–FAT and FFS (fsck) to protect filesystem
structure/metadata
–Many app-level recovery schemes (e.g., Word, emacs
autosaves)

21.10Crooks CS162 © UCB Fall 2023

Berkeley FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free
blocks and inodes

• Update directory with file
name → inode number

• Update modify time for
directory

Recovery:
• Scan inode table
• If any unlinked files (not
in any directory), delete or
put in lost & found dir

• Compare free block bitmap
against inode trees

• Scan directories for missing
update/access times

Time proportional to disk
size

21.11Crooks CS162 © UCB Fall 2023

Reliability Approach #2: Copy on Write File Layout

Create a new version of the file with the updated data
–Reuse blocks that don’t change much of what is
already in place

Seems expensive!
–But Updates can be batched
–Almost all disk writes can occur in parallel

Approach taken in network file server appliances
–NetApp’s Write Anywhere File Layout (WAFL)
–ZFS (Sun/Oracle) and OpenZFS

21.12Crooks CS162 © UCB Fall 2023

More General Reliability Solutions
Use Transactions for atomic updates
–Ensure that multiple related updates are performed
atomically
–i.e., if a crash occurs in the middle, the state of the
systems reflects either all or none of the updates
–Most modern file systems use transactions internally to
update filesystem structures and metadata
–Many applications implement their own transactions

Provide Redundancy for media failures
–Redundant representation on media (Error Correcting
Codes)
–Replication across media (e.g., RAID disk array)

21.13Crooks CS162 © UCB Fall 2023

Transactions
Closely related to critical sections for manipulating
shared data structures

They extend concept of atomic update from memory
to stable storage
–Atomically update multiple persistent data structures

Many ad-hoc approaches
–FFS carefully ordered the sequence of updates so
that if a crash occurred while manipulating
directory or inodes the disk scan on reboot would
detect and recover the error (fsck)
–Applications use temporary files and rename

21.14Crooks CS162 © UCB Fall 2023

Key Concept: Transaction

A transaction is an atomic sequence of reads and writes
that takes the system from consistent state to another.

Recall: Code in a critical section appears atomic to other
threads

Transactions extend the concept of atomic updates from
memory to persistent storage

consistent state 1 consistent state 2
transaction

21.15Crooks CS162 © UCB Fall 2023

Typical Structure

Begin a transaction – get transaction id

Do a bunch of updates
– If any fail along the way, roll-back

– Or, if any conflicts with other transactions, roll-back

Commit the transaction

21.16Crooks CS162 © UCB Fall 2023

“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice';

UPDATE branches SET balance = balance - 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

21.17Crooks CS162 © UCB Fall 2023

Concept of a log

One simple action is atomic – write/append a basic item
Use that to seal the commitment to a whole series of

actions

G
et

 1
0$

 fr
om

 a
cc

ou
nt

 A

G
et

 7
$

fr
om

 a
cc

ou
nt

 B

G
et

 1
3$

 fr
om

 a
cc

ou
nt

 C

Pu
t

15
$

in
to

 a
cc

ou
nt

 X

Pu
t

15
$

in
to

 a
cc

ou
nt

 Y

St
ar

t T
ra

n
N

C
om

m
it

Tr
an

 N

21.18Crooks CS162 © UCB Fall 2023

Write-Ahead Logging

Better reliability through use of log
–Changes are treated as transactions
–A transaction is committed once it is written to the
log
»Data forced to disk for reliability
»Process can be accelerated with NVRAM

–Although File system may not be updated immediately,
data preserved in the log

Difference between “Log Structured” and “Journaled”
–In a Log Structured filesystem, data stays in log form
–In a Journaled filesystem, Log used for recovery

21.19Crooks CS162 © UCB Fall 2023

Journaling File Systems
Don’t modify data structures on disk directly
Write each update as transaction recorded in a log
–Commonly called a journal or intention list
–Also maintained on disk (allocate blocks for it when
formatting)

Once changes are in the log, they can be safely applied
to file system
–e.g. modify inode pointers and directory mapping

Linux took original FFS-like file system (ext2) and added a
journal to get ext3!
–Some options: whether or not to write all data to
journal or just metadata

21.20Crooks CS162 © UCB Fall 2023

Creating a File (No Journaling Yet)

Find free data block(s)
Find free inode entry
Find dirent insertion point

Write map (i.e., mark used)
Write inode entry to point to
block(s)
Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

21.21Crooks CS162 © UCB Fall 2023

Creating a File (With Journaling)

Find free data block(s)
Find free inode entry
Find dirent insertion point

[log] Write map (i.e., mark used)
[log] Write inode entry to point to
block(s)
[log] Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

21.22Crooks CS162 © UCB Fall 2023

After Commit, Eventually Replay Transaction

All accesses to the file system
first looks in the log
–Actual on-disk data structure
might be stale

Eventually, copy changes to disk
and discard transaction from the
log

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

head

pendingdone

st
ar

t

co
m

m
it

tail tail tail tail tail

21.23Crooks CS162 © UCB Fall 2023

Crash Recovery: Discard Partial Transactions

Upon recovery, scan the log

Detect transaction start with no
commit

Discard log entries

Disk remains unchanged

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

21.24Crooks CS162 © UCB Fall 2023

Scan log, find start

Find matching commit

Redo it as usual
Or just let it happen later

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Crash Recovery: Keep Complete Transactions

21.25Crooks CS162 © UCB Fall 2023

Journaling Summary

Why go through all this trouble?
Updates atomic, even if we crash:
–Update either gets fully applied or discarded
–All physical operations treated as a logical unit

Isn’t this expensive?
Yes! We're now writing all data twice (once to log,
once to actual data blocks in target file)
Modern filesystems journal metadata updates only
–Record modifications to file system data structures
–But apply updates to a file’s contents directly

21.26Crooks CS162 © UCB Fall 2023

Topic Breakdown

Virtualizing the CPU

Process Abstraction and API
Threads and Concurrency

Scheduling

Virtualizing Memory Virtual Memory
Paging

Persistence
IO devices
File Systems

Distributed Systems
Challenges with distribution
Data Processing & Storage

21.27Crooks CS162 © UCB Fall 2023

What is a Distributed System?

A distributed system is one in which the failure
of a computer you didn't even know existed can

render your own computer unusable.

Leslie Lamport,
The Godfather of Distributed Systems

21.28Crooks CS162 © UCB Fall 2023

Centralised vs Distributed Systems

Considered a single computer!
All computation was done on
the local computer in isolation

The world is a large
distributed system

21.29Crooks CS162 © UCB Fall 2023

Two types of distributed systems

Server

Client/Server Model Peer-to-Peer Model

One or more server
provides services to

clients

Clients makes remote
procedure calls to server
Server serves requests

from clients

Each computer acts as a peer

No hierarchy or central point of
coordination

All-way communication between
peers through gossiping

21.30Crooks CS162 © UCB Fall 2023

Example: How do I store all my data?

21.31Crooks CS162 © UCB Fall 2023

The promise of distributed systems

Availability
Proportion of time system is in functioning condition

=> One machine goes down, use another
Fault-tolerance

System has well-defined behaviour when fault occurs
=> Store data in multiple locations

Scalability
Ability to add resources to system to support more work

⇒Just add machines when need more storage/processing
power

Transparency
The ability of the system to mask its complexity behind

a simple interface

21.32Crooks CS162 © UCB Fall 2023

Transparency
Location: Can’t tell where resources are located

Migration: Resources may move without the user
knowing

Replication: Can’t tell how many copies of resource
exist

Concurrency: Can’t tell how many users there are

Parallelism: System may speed up large jobs by
splitting them into smaller pieces

Fault Tolerance: System may hide various things that
go wrong

21.33Crooks CS162 © UCB Fall 2023

The challenges of distributed systems

How do you get machines to communicate?

How do you get machines to coordinate?

How do you deal with failures?

How do you deal with security (corrupted machines)?

21.34Crooks CS162 © UCB Fall 2023

Topic roadmap

Distributed File Systems

Peer-To-Peer System:
The Internet

Distributed Data Processing

Coordination
(Atomic Commit and

Consensus)

21.35Crooks CS162 © UCB Fall 2023

How do machines communicate?

A protocol is an agreement on how to communicate,

–Syntax: how a communication is specified & structured
»Format, order messages are sent and received
–Semantics: what a communication means

»Actions taken when transmitting, receiving, or when a
timer expires

B
A

DC
E

B
A

DC
E

Stable
Storage

Stable
Storage

Protocol Exchange

21.36Crooks CS162 © UCB Fall 2023

Examples of Protocols in Human Interactions
• Telephone

1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”

6. Caller: “Hi, it’s Natacha….”
Or: “Hi, it’s me” (← what’s that about?)

7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up

21.37Crooks CS162 © UCB Fall 2023

Message Passing

How do you actually program a distributed application?

Interface:
–Mailbox (mbox): temporary holding area for messages
–Send(message,mbox)
–Receive(buffer,mbox)

Network

Send

Receive

21.38Crooks CS162 © UCB Fall 2023

Question: Data Representation
An object in memory has a

machine-specific binary representation

Without shared memory, externalizing an object requires
us to turn it into a sequential sequence of bytes

–Serialization/Marshalling: Express an object as a
sequence of bytes

–Deserialization/Unmarshalling: Reconstructing the
original object from its marshalled form at

destination

21.39Crooks CS162 © UCB Fall 2023

Simple Data Types
uint32_t x;

Suppose I want to write a x to a file

First, open the file: FILE* f = fopen(“foo.txt”, “w”);
Then, I have two choices:

1. fprintf(f, “%lu”, x);
2. fwrite(&x, sizeof(uint32_t), 1, f);

Neither one is “wrong” but sender and receiver should
be consistent!

21.40Crooks CS162 © UCB Fall 2023

Machine Representation: Endianness
Which end of a machine-recognized
object (e.g., int) does its byte-address
refer to?

Big Endian: address is the most-
significant bits

Little Endian: address is the least-
significant bits

21.41Crooks CS162 © UCB Fall 2023

What About Richer Objects?
Consider word_count_t of Homework 0 and 1 …

Each element contains:
–An int
–A pointer to a string (of some length)
–A pointer to the next element

fprintf_words writes these as a sequence of lines (character
strings with \n) to a file stream

What if you wanted to write the whole list as a binary object
(and read it back as one)?
–How do you represent the string?
–Does it make any sense to write the pointer?

21.42Crooks CS162 © UCB Fall 2023

Data Serialization Formats

Google Protobuffers, JSON and XML are commonly
used in web applications

Lots of ad-hoc formats

{ “ faculty”:
 [
 {id: 1,
 “name”: “Anthony”,
 “lastname”: “Joseph”
 },
 {id: 2,
 “name”: “Natacha”,
 “lastname”: “Crooks”
 }
]
}

21.43Crooks CS162 © UCB Fall 2023

Data Serialization Formats

https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats

21.44Crooks CS162 © UCB Fall 2023

Remote Procedure Call (RPC)
Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive
– And must deal with machine representation by hand

Another option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Idea: Make communication look like an ordinary function call
– Automate all of the complexity of translating between
representations

– Client calls:
 remoteFileSystem→Read("rutabaga");

– Translated automatically into call on server:
 fileSys→Read("rutabaga");

21.45Crooks CS162 © UCB Fall 2023

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

bundle
ret vals

unbundle
ret vals

send

receive

Machine A

Machine B

Packet
Handler

Packet
Handler

N
etw

orkN
et

w
or

k

Server
Stub

unbundle
args

send

Server
Stub

unbundle
args

RPC Information Flow

Client
Stub

bundle
args

21.46Crooks CS162 © UCB Fall 2023

RPC Implementation

Request-response message passing (under covers!)

“Stub” provides glue on client/server
–Client stub is responsible for “marshalling” arguments
and “unmarshalling” the return values
–Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

Marshalling involves (depending on system)
–Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.

21.47Crooks CS162 © UCB Fall 2023

RPC Details (1/3)
Equivalence with regular procedure call
–Parameters ⇔ Request Message
–Result ⇔ Reply message
–Name of Procedure: Passed in request message
–Return Address: mbox2 (client return mail box)

Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition
language (IDL)”
»Contains, among other things, types of arguments/return

–Output: stub code in the appropriate source language
»Code for client to pack message, send it off, wait for
result, unpack result and return to caller
»Code for server to unpack message, call procedure, pack
results, send them off

21.48Crooks CS162 © UCB Fall 2023

RPC Details (2/3)
Cross-platform issues:
–What if client/server machines are different architectures/
languages?
»Convert everything to/from some canonical form
»Tag every item with an indication of how it is encoded
(avoids unnecessary conversions)

How does client know which mbox (destination queue) to send
to?
–Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)
–Binding: the process of converting a user-visible name into
a network endpoint
»This is another word for “naming” at network level
» Static: fixed at compile time
»Dynamic: performed at runtime

21.49Crooks CS162 © UCB Fall 2023

RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service → mbox

–Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

21.50Crooks CS162 © UCB Fall 2023

Problems with RPC: Non-Atomic Failures
• ifferent failure modes in dist. system than on a
single machine

Consider many different types of failures
–User-level bug causes address space to crash
–Machine failure, kernel bug causes all processes on
same machine to fail
–Some machine is compromised by malicious party

Can easily result in inconsistent view of the world
–Did my cached data get written back or not?
–Did server do what I requested or not?

Answer? Distributed transactions/2PC

21.51Crooks CS162 © UCB Fall 2023

Problems with RPC: Performance

RPC is not performance transparent:
–Cost of Procedure call « same-machine RPC «

network RPC
–Overheads: Marshalling, Stubs, Kernel-Crossing, Communication

Programmers must be aware that RPC is not free
–Caching can help, but may make failure handling

complex

	CS162�Operating Systems and�Systems Programming�Lecture 21���Reliability & Distributed Systems
	Recall: File System Ideas
	File System Buffer Cache
	Recall: Dealing with Persistent State
	Recall: Boom!
	Happy Birthday Windows!
	Recall: Storage Reliability Problem
	Two Reliability Approaches
	Reliability Approach #1: Careful Ordering
	Berkeley FFS: Create a File
	Reliability Approach #2: Copy on Write File Layout
	More General Reliability Solutions
	Transactions
	Key Concept: Transaction
	Typical Structure
	“Classic” Example: Transaction
	Concept of a log
	Write-Ahead Logging
	Journaling File Systems
	Creating a File (No Journaling Yet)
	Creating a File (With Journaling)
	After Commit, Eventually Replay Transaction
	Crash Recovery: Discard Partial Transactions
	Crash Recovery: Keep Complete Transactions
	Journaling Summary
	Topic Breakdown
	What is a Distributed System?
	Centralised vs Distributed Systems
	Two types of distributed systems
	Example: How do I store all my data?
	The promise of distributed systems
	Transparency
	The challenges of distributed systems
	Topic roadmap
	How do machines communicate?
	Examples of Protocols in Human Interactions
	Message Passing
	Question: Data Representation
	Simple Data Types
	Machine Representation: Endianness
	What About Richer Objects?
	Data Serialization Formats
	Data Serialization Formats
	Remote Procedure Call (RPC)
	RPC Information Flow
	RPC Implementation
	RPC Details (1/3)
	RPC Details (2/3)
	RPC Details (3/3)
	Problems with RPC: Non-Atomic Failures
	Problems with RPC: Performance

