
CS162
Operating Systems and
Systems Programming

Lecture 23

Internet & Data Processing Systems
Professor Natacha Crooks

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, 
Alison Norman and Lorenzo Alvisi



23.2Crooks CS162 © UCB Fall 2023

Recall: Virtual Filesystem Switch

Virtual abstraction of file system
–Provides virtual superblocks, inodes, files, etc
–Compatible with a variety of local and remote file systems

VFS allows the same system call interface (the API) to be used for different types of file systems
–The API is to the VFS interface, rather than any specific type of file system



23.3Crooks CS162 © UCB Fall 2023

Example Linux mounting tree



23.4Crooks CS162 © UCB Fall 2023

Recall: Stateless Protocol

Stateless Protocol: A protocol in which all information 
required to service a request is included with the 

request

Idempotent Operations – repeating an operation multiple 
times is same as executing it just once (e.g., storing 

to a mem addr.)



23.5Crooks CS162 © UCB Fall 2023

Recall: Network File System (NFS)

It’s an open world!

Three Layers for NFS system

UNIX file-system interface: open, read, write, close 
calls + file descriptors

VFS layer: distinguishes local from remote files
»Calls the NFS protocol procedures for remote 
requests

NFS service layer: bottom layer of the architecture
»Implements the NFS protocol



23.6Crooks CS162 © UCB Fall 2023

Recall: NFS Architecture



23.7Crooks CS162 © UCB Fall 2023

Topic roadmap

Distributed File Systems

Peer-To-Peer System: 
The Internet

Distributed Data Processing

Coordination
(Atomic Commit and 

Consensus)



23.8Crooks CS162 © UCB Fall 2023

Case study: The Internet
The Internet is the largest distributed 
system that exists!

Many different applications
– Email, web, P2P, etc.

Many different operating systems and 
devices

Many different network styles and 
technologies

–Wireless, wired, optical

How do we organize this mess
– Layering & end-to-end principle

Skype SSH NFS

Packet
Radio

Coaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP



23.9Crooks CS162 © UCB Fall 2023

The Internet: Layers, Layers, Layers

Introduce intermediate layers that provide set of abstractions for 
various network functionality & technologies

– A new app/media implemented only once

Goal: Reliable communication channels on which to build distributed 
applications

Skype SSH NFS

Packet
radio

Coaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate 
layers

“Narrow Waist”
Internet Protocol



23.10Crooks CS162 © UCB Fall 2023

The Internet: The hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

“Narrow waist” 
facilitates 
interoperability

Layers “abstract” away 
hardware so that upper 
layers are agnostic to 
lower layers
=> Sound familiar?

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio



23.11Crooks CS162 © UCB Fall 2023

The Internet: Implications of Hourglass

Single Internet-layer module (IP):

Allows arbitrary networks to interoperate
–Any network technology that supports IP can exchange 
packets

Allows applications to function on all networks
–Applications that can run on IP can use any network

Supports simultaneous innovations above and below IP
–But changing IP itself, i.e., IPv6, very involved



23.12Crooks CS162 © UCB Fall 2023

The Internet: Drawbacks of Layering

Layer N may duplicate layer N-1 functionality 
–E.g., error recovery to retransmit lost data

Layers may need same information
–E.g., timestamps, maximum transmission unit size

Layering can hurt performance
–E.g., hiding details about what is really going on

Some layers are not always cleanly separated
–Inter-layer dependencies for performance reasons
–Some dependencies in standards (header checksums)



23.13Crooks CS162 © UCB Fall 2023

End-To-End Argument
Hugely influential paper: 
–“End-to-End Arguments in System Design” by Saltzer, 
Reed, and Clark (‘84)

“Sacred Text” of the Internet
–Endless disputes about what it means
–Everyone cites it as supporting their position

Simple Message: Some types of network functionality can 
only be correctly implemented end-to-end
–Reliability, security, etc.

Hosts cannot rely on the network help to meet 
requirement, so must implement it themselves



23.14Crooks CS162 © UCB Fall 2023

Example: Reliable File Transfer

Solution 1: make each step reliable, and then 
concatenate them

Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK



23.15Crooks CS162 © UCB Fall 2023

Discussion

Solution 1 is incomplete
What happens if memory is corrupted?
Receiver has to do the check anyway!

Solution 2 is complete
Full functionality can be entirely implemented at 
application layer with no need for reliability from 
lower layers

Is there any need to implement reliability at lower 
layers?
Well, it could be more efficient



23.16Crooks CS162 © UCB Fall 2023

End-to-End Principle

Implementing complex functionality in the network:
- Doesn’t always reduce host implementation 
complexity
- Does increase network complexity
- Probably imposes delay and overhead on all 
applications, even if they don’t need functionality

However, implementing in network can enhance 
performance in some cases
–e.g., very lossy link



23.17Crooks CS162 © UCB Fall 2023

Conservative Interpretation of E2E

Don’t implement a function at the lower levels 
of the system unless it can be completely 

implemented at this level

Or: Unless you can relieve the burden from 
hosts, don’t bother



23.18Crooks CS162 © UCB Fall 2023

Moderate Interpretation

Think twice before implementing functionality in the 
network

If hosts can implement functionality correctly, 
implement it in a lower layer only as a performance 

enhancement

But do so only if it does not impose burden on 
applications that do not require that functionality

This is the interpretation we are using



23.19Crooks CS162 © UCB Fall 2023

Case Study: Distributed Data Processing



23.20Crooks CS162 © UCB Fall 2023

Motivation

How can I compute the number of different words 
in a set of files? 

Option 1: Iterate over the files one by one 

Option 2: Spawn one thread per file, merge at the end

Option 3: Spawn one thread per file-chunk, 
merge at the end

Option 4: Spawn one thread per file-chunk on many 
machines, merge at the end



23.21Crooks CS162 © UCB Fall 2023

Distributed Word Count

Pros
Can scale almost infinitely. Not bound by processing 
power of a single machine. Many cheap machines 

usually cheaper than one big one

Cons
Building distributed application is really hard. 

Must deal with networking/RPC
Must tolerate partial failures

Must deal with distributed scheduling. 



23.22Crooks CS162 © UCB Fall 2023

Distributed Data Processing Goal

Come up with a model for breaking large computations 
into smaller tasks, then build a framework that 
distributes those tasks to workers in a cluster

Emphasis on simplicity! Non-experts should be able to 
use the framework.

Introduce MapReduce (Hadoop open-source version)



23.23Crooks CS162 © UCB Fall 2023

Motivation / History

MapReduce developed by Google; paper published in 
2004

Google had large amounts of raw data:
– Crawled web pages

– Server logs
– Search data

Needed to be able to analyze that data to construct 
search indices, analyze website popularity, etc.



23.24Crooks CS162 © UCB Fall 2023

Motivation / History

Large amounts of clusters of commodity machines
– Commodity: an “off-the-shelf” machine, ie. hardware 

not custom-built for Google
– Wanted to distribute workload to all these 

machines
Many “one-off” solutions for parallelizing workload

– Hard to maintain
– Hard to get right

– Time-consuming to implement



23.25Crooks CS162 © UCB Fall 2023

Map/Reduce Programming Model

Map Function

map: (k1,v1) → list(k2,v2)
Takes an input key-value pair

Outputs a list of key-value pairs

Map: (k1,v1) -> (k1 + 1, v1 + 1)

Map: (k1,v1) -> (v1, k1)



23.26Crooks CS162 © UCB Fall 2023

Map/Reduce Programming Model

Reduce Function

reduce: (k2,list(v2)) → list(v2)
Takes in a key and a list of all values 

corresponding to that key
Produces a list of output values

reduce: (k2, list(v2) -> [sum(list(v2))]

reduce: (k2, list(v2) -> [fold(0,+,(list(v2))]



23.27Crooks CS162 © UCB Fall 2023

Revisiting Word Count

How can we implement word count 
using only map and reduce?

Three steps: 

1) convert files into pairs of (key,value)
2) Define a map function. Apply to all files
3) Shuffle! All elements with same key 

go to same reduce
4) Define a reduce function. Apply to result of the 

map function.



23.28Crooks CS162 © UCB Fall 2023

1000 ft view of Map Reduce

Map

Map

Map

Map

Map

Reduce

File

File

File



23.29Crooks CS162 © UCB Fall 2023

1000 ft view of Map Reduce

Map

Map

Map

Map

Map

ReduceFile

File

File

Reduce

Reduce



23.30Crooks CS162 © UCB Fall 2023

Word Count Map Reduce



23.31Crooks CS162 © UCB Fall 2023

WC. Step 1: to (Key, Value)

Transform file into:
(File Name, List of words)

Map function takes (Key, List) and 
maps it to List (Key, Value).



23.32Crooks CS162 © UCB Fall 2023

Map function:

Associate each word with 
an associated count!

WC. Step 2: Map Function



23.33Crooks CS162 © UCB Fall 2023

WC. Step 2: Map Function



23.34Crooks CS162 © UCB Fall 2023

WC. Step 3: Let’s do the shuffle!

Aggregate intermediate 
results by key

What should be the 
reduce function?



23.35Crooks CS162 © UCB Fall 2023

WC. Step 4: Reduce



23.36Crooks CS162 © UCB Fall 2023

WC. Step 4: Reduce



23.37Crooks CS162 © UCB Fall 2023

WC. Final Step, Generate output



23.38Crooks CS162 © UCB Fall 2023

Map Reduce System Architecture

Coord



23.39Crooks CS162 © UCB Fall 2023

Fault Tolerance

MapReduce assumes that:
Any individual machine is unlikely to crash

But large cluster of machines is likely to experience 
failures

MapReduce does not attempt to gracefully handle 
coordinator crashes.

MapReduce does handle worker failures



23.40Crooks CS162 © UCB Fall 2023

Idempotence is back!
When a worker fails, simply retry failed tasks!

Since failed tasks are retried, application map and 
reduce functions generally should be pure, deterministic 

functions of their arguments. 

Should not depend on the current time, randomness, 
resources accessed over the network, etc.

Tasks that are not pure functions can be run on 
MapReduce, but the results may or may not be 

cohesive



23.41Crooks CS162 © UCB Fall 2023

Stragglers

With many machines, probability that one is slow 
increases. 

Cannot begin reduce phase until map phase has 
completed.

Spawn “duplicate/backup” tasks to reduce probability of 
stragglers



23.42Crooks CS162 © UCB Fall 2023

Beyond MapReduce

Not all programs can be expressed in map/reduce 
structure.

Hard for programmers to think of computation in this 
way. 

Disk-based and heavy network load (with shuffle)

A lot of research in the area:
in-memory processing (Spark), graph-processing 

(PowerGraph), incremental processing (Naiad), dataflow-
based (Dryad), and many, many others


	CS162�Operating Systems and�Systems Programming�Lecture 23���Internet & Data Processing Systems
	Recall: Virtual Filesystem Switch
	Example Linux mounting tree
	Recall: Stateless Protocol
	Recall: Network File System (NFS)
	Recall: NFS Architecture
	Topic roadmap
	Case study: The Internet
	The Internet: Layers, Layers, Layers
	The Internet: The hourglass
	The Internet: Implications of Hourglass
	The Internet: Drawbacks of Layering
	End-To-End Argument
	Example: Reliable File Transfer
	Discussion
	End-to-End Principle
	Conservative Interpretation of E2E
	Moderate Interpretation
	Case Study: Distributed Data Processing
	Motivation
	Distributed Word Count
	Distributed Data Processing Goal
	Motivation / History
	Motivation / History
	Map/Reduce Programming Model
	Map/Reduce Programming Model
	Revisiting Word Count
	1000 ft view of Map Reduce
	1000 ft view of Map Reduce
	Word Count Map Reduce
	WC. Step 1: to (Key, Value)
	WC. Step 2: Map Function
	WC. Step 2: Map Function
	WC. Step 3: Let’s do the shuffle!
	WC. Step 4: Reduce
	WC. Step 4: Reduce
	WC. Final Step, Generate output
	Map Reduce System Architecture
	Fault Tolerance
	Idempotence is back!
	Stragglers
	Beyond MapReduce

