
CS162
Operating Systems and
Systems Programming

Lecture 24

Coordination
Professor Natacha Crooks

https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, 
Alison Norman and Lorenzo Alvisi



23.2Crooks CS162 © UCB Fall 2023

Recall: End To End Principle

Think twice before implementing functionality in the 
network

If hosts can implement functionality correctly, 
implement it in a lower layer only as a performance 

enhancement

But do so only if it does not impose burden on 
applications that do not require that functionality

This is the interpretation we are using



23.3Crooks CS162 © UCB Fall 2023

Recall: Map Reduce

How can we implement word count 
using only map and reduce?

Three steps: 

1) convert files into pairs of (key,value)
2) Define a map function. Apply to all files
3) Shuffle! All elements with same key 

go to same reduce
4) Define a reduce function. Apply to result of the 

map function.



23.4Crooks CS162 © UCB Fall 2023

Recall: Map Reduce



23.5Crooks CS162 © UCB Fall 2023

Recall: Idempotence is back!
When a worker fails, simply retry failed tasks!

Since failed tasks are retried, application map and 
reduce functions generally should be pure, deterministic 

functions of their arguments. 

Should not depend on the current time, randomness, 
resources accessed over the network, etc.

Tasks that are not pure functions can be run on 
MapReduce, but the results may or may not be 

cohesive



23.6Crooks CS162 © UCB Fall 2023

Topic roadmap

Distributed File Systems

Peer-To-Peer System: 
The Internet

Distributed Data Processing

Coordination
(Atomic Commit and 

Consensus)



23.7Crooks CS162 © UCB Fall 2023

Coordination: making distributed decisions

Functionality is spread across 
machines. Requires coordination to 

reach distributed decision

Distributed Protocols are hard!



23.8Crooks CS162 © UCB Fall 2023

Coordination is hard!

When machines can fail!

When networks are slow and/or unreliable

When machines may receive conflicting 
proposals on what to do



23.9Crooks CS162 © UCB Fall 2023

Coordination: making distributed decisions

Accept? 
YES

Accept? 
YES

Accept if all 
machines 
accept

Accept? 
YES

Flush to disk

Flush to disk

Flush to disk

Client: 
persist 
my 
data

Your 
data is 
persisted!



23.10Crooks CS162 © UCB Fall 2023

Agreeing simultaneously: General’s Paradox

Two generals, on separate mountains
»Can only communicate via messengers

»Messengers can be captured

Problem: need to coordinate attack
»If they attack at different times, they all die

»If they attack at same time, they win



23.11Crooks CS162 © UCB Fall 2023

General’s Paradox: Scenario 1

Attack at 11 am!



23.12Crooks CS162 © UCB Fall 2023

General’s Paradox: Scenario 1

Attack at 11 am!

Yes! Attack at 11 am!

Is it safe for both of them to attack?
No! Caesar doesn’t know that Brutus received the message!



23.13Crooks CS162 © UCB Fall 2023

General’s Paradox: Scenario 1

Attack at 11 am!

Yes! Attack at 11 am!

Sends an ACK to 
Caesar!



23.14Crooks CS162 © UCB Fall 2023

General’s Paradox: Scenario 1

Attack at 11 am!

Yes! Attack at 11 am!

Now is it safe?
No! Messenger could have been attacked



23.15Crooks CS162 © UCB Fall 2023

General’s Paradox: Scenario 1

Caesar needs to know that 
Brutus knows that
Caesar knows that 
Brutus knows that
They are attacking at 11 
am

Impossible to achieve 
simultaneous actions with 
unreliable channels because 

never know whether 
messenger or ACK got lost



23.16Crooks CS162 © UCB Fall 2023

Agreeing simultaneously: General’s Paradox

If the network is unreliable, it is impossible to 
guarantee two entities do something simultaneously

If nodes behave maliciously, impossible to get 
eventual agreement if there are less than 3f+1 
parties present (of which f can misbehave)

Entire textbook on impossibility results in distributed 
computing … 



23.17Crooks CS162 © UCB Fall 2023

Eventual Agreement: Two-Phase Commit

Two or more machines agree to do something, 
or not do it, atomically

No constraints on time, just that it will 
eventually happen!

Used in most modern distributed systems! 
Representative of other coordination protocols



23.18Crooks CS162 © UCB Fall 2023

Eventual Agreement: Two-Phase Commit

Developed by Turing award winner Jim Gray 
–(first Berkeley CS PhD, 1969)

Many important Database breakthroughs also 
from Jim Gray

Jim Gray



23.19Crooks CS162 © UCB Fall 2023

Eventual Agreement: Two-Phase Commit

All processes that reach a decision reach the same one 
(Agreement)

A process cannot reverse its decision after it has reached one 
(Finality)

If there are no failures and every process votes yes, the 
decision will be commit (Consistency)

If all failures are repaired and there are no more failures, then 
all processes will eventually decide commit/abort (Termination)

Goal: determine whether should commit or 
abort a transaction



23.20Crooks CS162 © UCB Fall 2023

2PC Terminology

Setup: 
–One coordinator

–A set of participants

Each process has access to a persistent log: 

Processes can crash and recover.

Recorded information on the log will persist after crashes



23.21Crooks CS162 © UCB Fall 2023

2PC Terminology

Coordinator asks all processes to vote

Each participant (including coordinator) can vote
either YES or NO

–If all vote YES, coordinator must vote COMMIT
–If one of them votes NO, coordinator must vote ABORT



23.22Crooks CS162 © UCB Fall 2023

2PC: The easy case (No failures)

1. Coordinator sends VOTE-REQ to all 
workers

2.
– Send VOTE-COMMIT or VOTE-ABORT 

to coordinator
– If sent VOTE-ABORT immediately 

abort
3. Collect votes
– If receive VOTE-COMMIT from all N 

workers, send GLOBAL-COMMIT to 
all workers

– If don’t receive VOTE-COMMIT from 
all N workers, send GLOBAL-ABORT 
to all workers

4.
- If receive GLOBAL-COMMIT then 
commit
– If receive GLOBAL-ABORT then abort

Coordinator Algorithm Worker Algorithm



23.23Crooks CS162 © UCB Fall 2023

Failure Free Example Execution

coordinator

worker 1

time

VOTE-
REQ

VOTE-
COMMIT

GLOBAL-
COMMIT

worker 2

worker 3



23.24Crooks CS162 © UCB Fall 2023

State Machine of Coordinator

Coordinator implements 
simple state machine

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE-REQ

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

Recv: all VOTE-COMMIT
Send: GLOBAL-COMMIT



23.25Crooks CS162 © UCB Fall 2023

What about failures?

1. Coordinator sends VOTE-
REQ to all workers

2.
– Send VOTE-COMMIT or 

VOTE-ABORT to 
coordinator

– If sent VOTE-ABORT 
immediately abort

3. Collect votes
– If receive VOTE-COMMIT 

from all N workers, send 
GLOBAL-COMMIT to all 
workers

– If don’t receive VOTE-
COMMIT from all N 
workers, send GLOBAL-
ABORT to all workers 4.

- If receive GLOBAL-COMMIT 
then commit
– If receive GLOBAL-ABORT 

then abort

Coordinator 
Algorithm

Worker 
Algorithm

1) What happens when 
waiting for a message 
that never comes? 

2) What happens 
during when participant 
recovers from a 
failure? 



23.26Crooks CS162 © UCB Fall 2023

What happens when a message never comes?

1. Coordinator sends VOTE-
REQ to all workers

2.
– Send VOTE-COMMIT or 

VOTE-ABORT to 
coordinator

– If sent VOTE-ABORT 
immediately abort

3. Collect votes
– If receive VOTE-COMMIT 

from all N workers, send 
GLOBAL-COMMIT to all 
workers

– If don’t receive VOTE-
COMMIT from all N 
workers, send GLOBAL-
ABORT to all workers 4.

- If receive GLOBAL-COMMIT 
then commit
– If receive GLOBAL-ABORT 

then abort

Coordinator 
Algorithm

Worker 
Algorithm • Step 2: worker waiting 

from VOTE-REQ from 
coordinator

• Step 3: Coordinator is 
waiting for vote from 
participants

• Step 4: Worker who voted 
YES is waiting for decision



23.27Crooks CS162 © UCB Fall 2023

What happens when a message never comes?

1. Coordinator sends VOTE-
REQ to all workers

2.
– Send VOTE-COMMIT or 

VOTE-ABORT to 
coordinator

– If sent VOTE-ABORT 
immediately abort

3. Collect votes
– If receive VOTE-COMMIT 

from all N workers, send 
GLOBAL-COMMIT to all 
workers

– If don’t receive VOTE-
COMMIT from all N 
workers, send GLOBAL-
ABORT to all workers 4.

- If receive GLOBAL-COMMIT 
then commit
– If receive GLOBAL-ABORT 

then abort

Coordinator 
Algorithm

Worker 
Algorithm • Step 2: worker waiting from VOTE-

REQ from coordinator

• Step 3: Coordinator is waiting for 
vote from participants

• Step 4: Worker who voted 
COMMIT is waiting for decision

Since it has not cast its vote yet, 
worker can decide abort and halt

Coordinator can always vote abort 
herself, so votes abort and sends 
GLOBAL-ABORT to all participants

Worker cannot decide: it must run a 
termination protocol



23.28Crooks CS162 © UCB Fall 2023

Termination Protocol 

• Option 1: Simply wait for coordinator to recover. 
If all failures are repaired and there are no more 
failures, then all processes will eventually decide 
commit/abort (Termination)

=> No need to recover until coordinator has recovered
• (Better) Option 2: Ask a friendly participant p

Case 1: If p has decided COMMIT/ABORT, 
forwards decision to initiator

Case 2: If P has not decided, votes ABORT, 
sends abort to initiator. Initiator knows 
decision will be ABORT. So can decide

Case 3: If P has voted COMMIT, P is also 
stuck and can’t help initiator

If every participant voted 
COMMIT and coordinator 
crashes before sending 
decision, must wait for 
coordinator to recover to 
decide!



23.29Crooks CS162 © UCB Fall 2023

Example of Coordinator Failure #1

coordinator

worker 1

VOTE-
REQ

VOTE-
ABORT

timeout

timeout

timeout

worker 2

worker 3



23.30Crooks CS162 © UCB Fall 2023

Example of Coordinator Failure #2

VOTE-REQ

VOTE-
COMMIT

block waiting for 
coordinator

restarted

GLOBAL-
ABORT

coordinator

worker 1

worker 2

worker 3



23.31Crooks CS162 © UCB Fall 2023

Machine recovery
All nodes use stable storage to store current state (e.g. backed by disk/SSD)

Upon recovery, nodes can restore state and resume

When coordinator sends VOTE-REQ, writes START-2PC to log

Before voting, participant writes VOTE-* to stable log, then sends 
vote

Before sending decision, coordinator writes GLOBAL-* to stable log, then sends 
decision

After receiving GLOBAL-*, participant writes commit/abort to stable log

=> Coordinator reads log, if sees VOTE-REQ but no decision, decides ABORT 
unilaterally

=> Participant reads log, if doesn’t see record, sends VOTE-ABORT. If VOTE-COMMIT, 
contacts friend

=> Coordinator reads log, if sees GLOBAL-*, resends decision

=> Participants read log, 2PC instance has already been terminated



23.32Crooks CS162 © UCB Fall 2023

2PC Summary

Why is 2PC not subject to the General’s paradox?
–Because 2PC is about all nodes eventually coming 
to the same decision – not necessarily at the same 
time!
–Allowing us to reboot and continue allows time for 
collecting and collating decisions

Biggest downside of 2PC: blocking
–A failed node can prevent the system from making 
progress
–Still one of the most popular coordination 
algorithms today



23.33Crooks CS162 © UCB Fall 2023

Alternatives to 2PC

Three-Phase Commit: One more phase, allows nodes to 
fail or block and still make progress.

PAXOS: An alternative used by Google and others that 
does not have 2PC blocking problem
–Develop by Leslie Lamport (Turing Award Winner)
–No fixed leader, can choose new leader on fly, deal 
with failure

What happens if one or more of the nodes is malicious?
–Malicious: attempting to compromise the decision 
making
–Use a more hardened decision-making process: 
Byzantine Agreement and Blockchains


	CS162�Operating Systems and�Systems Programming�Lecture 24���Coordination
	Recall: End To End Principle
	Recall: Map Reduce
	Recall: Map Reduce
	Recall: Idempotence is back!
	Topic roadmap
	Coordination: making distributed decisions
	Coordination is hard!
	Coordination: making distributed decisions
	Agreeing simultaneously: General’s Paradox
	General’s Paradox: Scenario 1
	General’s Paradox: Scenario 1
	General’s Paradox: Scenario 1
	General’s Paradox: Scenario 1
	General’s Paradox: Scenario 1
	Agreeing simultaneously: General’s Paradox
	Eventual Agreement: Two-Phase Commit
	Eventual Agreement: Two-Phase Commit
	Eventual Agreement: Two-Phase Commit
	2PC Terminology
	2PC Terminology
	2PC: The easy case (No failures)
	Failure Free Example Execution
	State Machine of Coordinator
	What about failures?
	What happens when a message never comes?
	What happens when a message never comes?
	Termination Protocol 
	Example of Coordinator Failure #1
	Example of Coordinator Failure #2
	Machine recovery
	2PC Summary
	Alternatives to 2PC

