
CS162
Operating Systems and
Systems Programming

Lecture 5
File Descriptors (Continued)

OS Library
Threads and the Thread API

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, ,
Alison Norman and Lorenzo Alvisi

5.2Crooks CS162 © UCB Fall 2023

Recall: Input/Output in Linux

UNIX offers the same IO interface for:

All device Input/Output

Reading/Writing Files

Interprocess communication

Printers Mouse

Disk

Pipes Socket

Everything is a file!

5.3Crooks CS162 © UCB Fall 2023

Goals For Today

• File descriptors (Continued)

• How does the OS library make it easier to program?

• What are threads and why are they useful?

• How are they implemented?

• How to write a program using threads?

5.4Crooks CS162 © UCB Fall 2023

Recall: File Descriptors
File descriptors index into

 a per-process file descriptor table

Each FD points to an
open file description in a system-wide table

of open files

O: STDIN

1: STDOUT

2: STDERR

Mode Flags Offset Phys

3

R 200

4

100

U

U RW

5.5Crooks CS162 © UCB Fall 2023

Manipulating FDs

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename,
int flags, [mode_t mode]);

int creat (const char
*filename, mode_t mode);

int close (int filedes);

Open/Create
All files explicitly opened via
open or create. Return the
lowest-numbered file descriptor
not currently open for the

process. Creates new open file
description

Close
Closes a file descriptor, so

that it no longer refers to any
file and may be reused

5.6Crooks CS162 © UCB Fall 2023

Manipulating FDs (2)

Read data from open file using file descriptor:
 ssize_t read (int filedes, void *buffer, size_t maxsize)

Write data to open file using file descriptor
 ssize_t write (int filedes, const void *buffer, size_t size)

Reposition file offset within kernel

 off_t lseek (int filedes, off_t offset, int whence)

5.7Crooks CS162 © UCB Fall 2023

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200U

Example

5.8Crooks CS162 © UCB Fall 2023

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200

4

0

U

U RW

Example

5.9Crooks CS162 © UCB Fall 2023

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200

4

100

U

U RW

Example

5.10Crooks CS162 © UCB Fall 2023

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200

4

100

U

U RW

Type man 2 write in
terminal. What do you

think?

Example

5.11Crooks CS162 © UCB Fall 2023

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200U

4

U 200RW

Example

5.12Crooks CS162 © UCB Fall 2023

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

close(fd)

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

4

RW 200

Example

U

5.13Crooks CS162 © UCB Fall 2023

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

close(fd); close(fd2)

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

Example

5.14Crooks CS162 © UCB Fall 2023

Duplicating FDs!

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

O: STDIN

1: STDOUT

2: STDERR

Mode Flags Offset Phys

3

R 200U

4

RW 200U

5.15Crooks CS162 © UCB Fall 2023

Duplicating FDs!

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

int fd3 = dup(fd2);

O: STDIN

1: STDOUT

2: STDERR

Creates copy fd3 of
file descriptor fd2

Mode Flags Offset Phys

3

R 200U

4

RW 200

5

U

5.16Crooks CS162 © UCB Fall 2023

Duplicating FDs!

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

int fd3 = dup(fd2);
read(fd2, buffer1, 100);

O: STDIN

1: STDOUT

2: STDERR

Mode Flags Offset Phys

3

R 200U

4

RW 300

5

U

5.17Crooks CS162 © UCB Fall 2023

Duplicating FDs!

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

int fd3 = dup(fd2);
read(fd2, buffer1, 100);

read(fd3, buffer1, 100);

O: STDIN

1: STDOUT

2: STDERR

Mode Flags Offset Phys

3

R 200U

4

RW 400

5

U

5.18Crooks CS162 © UCB Fall 2023

Duplicating FDs!

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

int fd3 = dup(fd2);
read(fd2, buffer1, 100);

read(fd3, buffer1, 100);

close(fd2);

O: STDIN

1: STDOUT

2: STDERR

Mode Flags Offset Phys

3

R 200U

RW 400

5

U

5.19Crooks CS162 © UCB Fall 2023

Duplicating FDs!

char buffer1[100];

char buffer2[100];

int fd = open(“foo.txt”,
O_RDONLY);

read(fd, buffer1, 100);

read(fd, buffer2, 100);

int fd2 = open(“bar.txt”,
O_RDWR);

read(fd2, buffer1, 100);

write(fd2, buffer2, 100);

int fd3 = dup(fd2);
read(fd2, buffer1, 100);

read(fd3, buffer1, 100);

close(fd2); close(fd3)

O: STDIN

1: STDOUT

2: STDERR

Mode Flags Offset Phys

3

R 200U

Open file description remains alive
until no file descriptors refer to it

5.20Crooks CS162 © UCB Fall 2023

Forking FDs

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200U

4

U 200RW

5.21Crooks CS162 © UCB Fall 2023

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table Global Open File

Description Table

Mode Flags Offset Phys

3

R 200U

4

U 200RW

O: STDIN

1: STDOUT

2: STDERR

Per-Process File
Descriptor
Table

3

4

Forking FDs

Global Open File
Description Table

Forked process inherits copies of file descriptors

5.22Crooks CS162 © UCB Fall 2023

Interprocess Communication: Pipes

Pipe implements a queue abstraction.
Implemented as a kernel buffer with two file

descriptors, one for writing to pipe and one for reading

Block if pipe full. Block if pipe empty.

int pipe(int fileds[2]);
Allocates two new file descriptors in the process
Writes to fileds[1] read from fileds[0]
Implemented as a fixed-size queue

5.23Crooks CS162 © UCB Fall 2023

#include <unistd.h>
int main(int argc, char *argv[])
{
 char *msg = "Message in a pipe.\n";
 char buf[BUFSIZE];
 int pipe_fd[2];
 if (pipe(pipe_fd) == -1) {
 fprintf (stderr, "Pipe failed.\n"); return EXIT_FAILURE;
 }
 ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);
 printf("Sent: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);

 ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);
 printf("Rcvd: %s [%ld]\n", msg, readlen);

 close(pipe_fd[0]);
 close(pipe_fd[1]);
}

Single-Process Pipe Example

5.24Crooks CS162 © UCB Fall 2023

O: STDIN

1: STDOUT

2: STDERR

Parent

Mode Flags Offset Phys

3

R 0U

4

U 0RW

O: STDIN

1: STDOUT

2: STDERR

Child

3

4

Pipes Between Processes

int pipe_fd[2];
pipe(pipe_fd);

3

4

5.25Crooks CS162 © UCB Fall 2023

O: STDIN

1: STDOUT

2: STDERR

Parent

Mode Flags Offset Phys

3

R 200U

4

U 200RW

O: STDIN

1: STDOUT

2: STDERR

Child

3

4

Pipes Between Processes

int pipe_fd[2];
pipe(pipe_fd);

3

4

5.26Crooks CS162 © UCB Fall 2023

After last “write” descriptor is closed,
pipe is effectively closed:

Reads return only “EOF”

After last “read” descriptor is closed,
writes generate SIGPIPE signals:

If process ignores, then the write
fails

with an “EPIPE” error

Pipes Between Processes

5.27Crooks CS162 © UCB Fall 2023

IPC across machines: Sockets

Sockets are an abstraction of two queues,
one in each direction

Can read or write to either end

Used for communication between multiple
processes on different machines

File descriptors obtained via
socket/bind/connect/listen/accept

Still a file! Same API/datastructures as files and pipes

5.28Crooks CS162 © UCB Fall 2023

Namespaces for Network Communication

Hostname
www.eecs.berkeley.edu

IP address
128.32.244.172 (IPv4, 32-bit Integer)
2607:f140:0:81::f (IPv6, 128-bit Integer)

Port Number
0-1023 are system ports

1024-49151 are registered ports
49152–65535 are free

http://www.eecs.berkeley.edu/

5.29Crooks CS162 © UCB Fall 2023

Sockets in concept
Client Server

Create Client Socket Client Socket
FD Create Server Socket

Bind to address
(host:port)

Server
Socket FD

Connect to address
(Host:Port) Listen for Connection

Connection
Socket FD Accept Connection

Read/Write Request Read/Write Request

Close Client Socket Close Client Socket

5.30Crooks CS162 © UCB Fall 2023

char *host_name, *port_name;

// Create a socket

struct addrinfo *server = lookup_host(host_name, port_name);

int sock_fd = socket(server->ai_family, server->ai_socktype,
 server->ai_protocol);

// Connect to specified host and port

connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol

run_client(sock_fd);

/* Clean up on termination */

close(sock_fd);

Client Protocol

5.31Crooks CS162 © UCB Fall 2023

// Socket setup code elided…

while (1) {

 // Accept a new client connection, obtaining a new socket

 int conn_socket = accept(server_socket, NULL, NULL);
 pid_t pid = fork();
 if (pid == 0) { // I am the child

 close(server_socket);
 serve_client(conn_socket);

 close(conn_socket);
 exit(0);

 } else { // // I am the parent

 close(conn_socket);
 }

}

close(server_socket);

Server Protocol

5.32Crooks CS162 © UCB Fall 2023

Summary: Input/Output Unix

Everything is a file!
Files, sockets, pipes all look the same!

Per-process file descriptor table points to
a global table of open file descriptions

Use open/create/read/write/close to
manipulate FDs.

Forked processes inherit FDs of parents

5.33Crooks CS162 © UCB Fall 2023

Goal 2: High-Level Systems API

5.34Crooks CS162 © UCB Fall 2023

OS Library

Glue
Provides a set of
common services

OS Kernel

OS Library (Libc)

Applications

5.35Crooks CS162 © UCB Fall 2023

OS Library (Standard Libraries)

5.36Crooks CS162 © UCB Fall 2023

OS Library (Standard Libraries)

1) Improve Programming
API

Minimises glue clode

Simulates additional
functionality

“High Level C API”

2) Performance

Minimises cost of syscalls

5.37Crooks CS162 © UCB Fall 2023

From FDs to Files

Internally contains:
- File descriptor (from call to open)
- Buffer (array)
- Lock (in case multiple threads use
the FILE concurrently)

FILE* is OS
Library wrapper
for manipulating
explicit files

FILE* API operates on
streams – unformatted
sequences of bytes (text
or binary data), with a
position

#include <stdio.h>

FILE *fopen(const char *filename,
 const char *mode);
int fclose(FILE *fp);

5.38Crooks CS162 © UCB Fall 2023

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err

int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);

char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

 size_t number_of_elements, FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements,

 size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);

int fscanf(FILE *restrict stream, const char *restrict format, ...);

C High-Level File API

5.39Crooks CS162 © UCB Fall 2023

C Streams: Char-by-Char I/O
int main(void) {

 FILE* input = fopen(“input.txt”, “r”);

 FILE* output = fopen(“output.txt”, “w”);

 int c;

 c = fgetc(input);
 while (c != EOF) {

 fputc(output, c);
 c = fgetc(input);
 }

 fclose(input);

 fclose(output);

}

5.40Crooks CS162 © UCB Fall 2023

From Syscall to Library Call

Trap into Kernel
Execute read syscall

handler()
Switch to User

Mode

User-level logic

User-level logic

Trap into Kernel
Execute read syscall

handler()
Switch to User

Mode

read() fread(), fgetc(), fscan()

5.41Crooks CS162 © UCB Fall 2023

FILE* is Buffered IO

Maintains a per-file user-level buffer.

Write Calls write to buffer. System flushes buffer
to disk when full (or on special character)

Read Calls read from buffer. System reads from
disk when buffer empty

Operations on file descriptors are
unbuffered & visible immediately

5.42Crooks CS162 © UCB Fall 2023

API Benefit

Buffering key to support different FILE IO APIs.
Simulate additional functionality!

Kernel always read fixed size block from disk. Buffer into
user-space.

OS Library parse buffer to read/write character/blocks/lines

User thinks they are writing individual characters or lines!

5.43Crooks CS162 © UCB Fall 2023

Performance Benefit

Syscalls are 25x more expensive than
function calls (~100 ns)

Minimise amount copied

La
te
nc
y

FI
LE
*

sy
sc
al
l50x

5.44Crooks CS162 © UCB Fall 2023

Great Power => Great Responsibility

What will be printed?
1) The call to fread might see the latest write ‘b’. Print b

2) Or it might miss it and see end of file. Print c

If not careful, buffering can cause inconsistencies

char x = ‘c’;
FILE* f1 = fopen(“file.txt”, “w”);
fwrite(“b”, sizeof(char), 1, f1);
FILE* f2 = fopen(“file.txt”, “r”);
fread(&x, sizeof(char), 1, f2);
print(“%c”, x);

fflush(f1);

5.45Crooks CS162 © UCB Fall 2023

Avoid Mixing FILE* and File Descriptors

char x[10];

char y[10];

FILE* f = fopen(“foo.txt”, “rb”);

int fd = fileno(f);

fread(x, 10, 1, f);

read(fd, y, 10);

Which bytes from the file are
read into y?
A. Bytes 0 to 9
B. Bytes 10 to 19
C. None of these?

Answer: C! None of the
above.
The fread() reads a big
chunk of file into user-level
buffer
Might be all of the file!

5.46Crooks CS162 © UCB Fall 2023

Goal 2: Introducing the Thread

5.47Crooks CS162 © UCB Fall 2023

Real-World Concurrency

Millions of drivers on motorway at once.

Student does homework while watching TV

Faculty has lunch while grading papers and watching the
Rugby World Cup

* The character portrayed in this slide are fictitious. No identification with actual
persons should be inferred.

5.48Crooks CS162 © UCB Fall 2023

OS Concurrency

Efficiently manage many different processes

Efficiency manage concurrent interrupts

Efficiently manage network interfaces

Must provide programmers with abstractions for
expressing and managing concurrency

5.49Crooks CS162 © UCB Fall 2023

What is a thread?

A single execution sequence that represents
a separately schedulable task

Virtualizes the processor.
Each thread runs on a dedicated virtual processor (with variable

speed). Infinitely many such processors.

Threads enable users to define each task with sequential code.
But run each task concurrently

5.50Crooks CS162 © UCB Fall 2023

What is a thread?

1

CPU

2

CPU

N

CPU

3

CPU

…

Programmer Abstraction

1

CPU

3

Physical Reality

2

n

…

…

5.51Crooks CS162 © UCB Fall 2023

Why do we need threads?

Natural Program Structure

Simultaneously update
screen, fetch new data
from network, receive

keyboard input

Exploiting parallelism

Split unit of work into n
tasks and process tasks
in parallel on multiple

cores.

Responsiveness

High priority work should
not be delayed by low
priority work. Schedule as

separate threads for
independence

Masking IO latency

Continue to do useful
work on separate thread
while blocked on IO

5.52Crooks CS162 © UCB Fall 2023

Thread ≠ Process

Processes defines the granularity at which the OS
offers isolation and protection

Threads capture concurrent sequences of computation

Processes consist of one or more threads!

Process
Protection

Thread
Concurrency

5.53Crooks CS162 © UCB Fall 2023

All you need is love (and a stack)

No protection

Threads inside the same
process and are not

isolated from each other

Individual execution

Threads execute disjoint
instruction streams. Need
own execution context

Share an address space
& share IO state (FDs)

Individual stack, register state
(including EIP, ESP, EBP)

5.54Crooks CS162 © UCB Fall 2023

PC
B

All you need is love (and a stack)

Code

Data

File Descriptor
Table

TCB
Thread 1

Saved
Registers

Heap

Stack

Metadata

TCB
Thread 2

Saved
Registers

Stack

Metadata

5.55Crooks CS162 © UCB Fall 2023

One Thread, Two Abstractions

User Threads Kernel Threads

One PCB for the process

Each thread has own TCB
stored in heap of process.

Threads in user-space only.
Invisible to kernel

Each thread has own TCB

Each thread individually
schedulable.

Requires mode switch to
switch threads

5.56Crooks CS162 © UCB Fall 2023

User Threads

Run mini-OS/scheduler in user space

Real OS is unaware of threads. Stores a single PCB for
all user threads within the same process

 Each thread has associated Thread Control Block
(TCB) kept by process in heap

 User-level threads incur lower overhead than kernel-level
thread

5.57Crooks CS162 © UCB Fall 2023

Kernel Threads

Kernel knows about threads.

Schedules each thread individually

Each thread has a separate PCB.

PCBs of threads mapped in the same process share
address space, files, code/data.
Different stack and registers.

Context-switching requires a mode switch

5.58Crooks CS162 © UCB Fall 2023

User Threads vs Kernel Threads

Kernel-Level Threads User-Level Threads
Ease of Implementation Easy to implement: just

like process, but with
shared address space

Requires implementing
user-level schedule and

context switches
Handling System Calls Thread can run blocking

systems call
concurrently

Blocking system call
blocks all threads:

needs OS support for
non-blocking system
calls (scheduler
activations)

Cost of Context
Switching

Thread switch requires
three context switches

Thread switch
efficiently implemented

in user space

5.59Crooks CS162 © UCB Fall 2023

(Kernel) Threads in Linux

To create a process

Call (internally)
 Clone system call

(do_fork() in kernel/fork.c)

 Duplicate task_struct.

Mark new process as
runnable.

To create a thread

Call (internally)
 Clone system call

(do_fork() in kernel/fork.c)

 Duplicate task_struct.

Mark new process as
runnable.

5.60Crooks CS162 © UCB Fall 2023

(Kernel) Threads in Linux

Everything is a thread (task_struct)

Scheduler only schedules task_struct

Processes are better viewed as the containers
in which threads execute

To fork a process:

Invoke clone(…)

To create a thread:

Invoke clone(CLONE_VM | CLONE_FS |
CLONE_FILES | CLONE_SIGHAND, 0)

CLONE_VM: Share address space. CLONE_FS: share file system.
CLONE_FILES: share open files. CLONE_SIGHAND: share handlers with

parents

5.61Crooks CS162 © UCB Fall 2023

OS Library API for Threads (pThreads)

int pthread_create(pthread_t *thread, …
 void *(*start_routine)(void*), void *arg);

Thread created and runs start_routine

void pthread_exit(void *value_ptr);
Terminates thread and makes value_ptr available to any

successful join

int pthread_yield();
Causes thread to yield the CPU to other threads

int pthread_join(pthread_t thread, void **value_ptr);
Suspends execution of calling thread until target thread

terminates.

5.62Crooks CS162 © UCB Fall 2023

Pthread Example

void *mythread(void *arg) {
printf("%s\n", (char *) arg);

 return NULL;
 }

 int main(int argc, char *argv[]) {
 pthread_t p1, p2;
 printf("main: begin\n");
 pthread_create(&p1, NULL, mythread, "A");
 pthread_create(&p2, NULL, mythread, "B");
 // join waits for the threads to finish
 pthread_join(p1, NULL);
 pthread_join(p2, NULL);
 printf("main: end\n");
}

5.64Crooks CS162 © UCB Fall 2023

Fork-Join Pattern

Main thread creates (forks) collection of sub-threads
passing them args to work on…

… and then joins with them, collecting results.

create

exit

join

5.65Crooks CS162 © UCB Fall 2023

// Socket setup code elided…

while (1) {

 // Accept a new client connection, obtaining a new socket

 int conn_socket = accept(server_socket, NULL, NULL);
 pid_t pid = fork();
 if (pid == 0) { // I am the child

 close(server_socket);
 serve_client(conn_socket);

 close(conn_socket);
 exit(0);

 } else { // // I am the parent

 close(conn_socket);
 }

}

close(server_socket);

Revisit the Server Protocol

How would you
rewrite the

concurrent server
example using

threads rather than
processes?

5.66Crooks CS162 © UCB Fall 2023

Multiprocess Multithreaded server!
// Socket setup code elided…

Int

while (1) {

 // Accept a new client connection, obtaining a new socket

 pthread_t tid;

 int conn_socket = accept(server_socket, NULL, NULL);
 int* arg = (int*) malloc(sizeof(int));

 *arg = conn_socket;

 pthread_create(&tid, NULL &serve_client, &arg);
}

close(server_socket);

5.67Crooks CS162 © UCB Fall 2023

Reviewing the pthread_create(…)
Do some work like a normal fn…
 place syscall # into %eax

 put args into registers %ebx, …
 special trap instruction

Mode switches & switches to kernel stack.
Saves recovery state

Jump to interrupt vector table at location 128.
Hands control to syscall_handler

Use %eax register to index into system call dispatch
table. Invoke do_fork() method. Initialise new TCB.

Mark thread READY. Push errcode into %eax

get return values from regs
 Do some more work like a normal fn…

Restore recovery state and mode switch

OS Library

OS Library

CPU

CPU

Kernel

5.68Crooks CS162 © UCB Fall 2023

With great power comes great concurrency

Protection is at process level.
Threads not isolated.

pthread_t tid[2];
int counter;

void* doSomeThing(void *arg) {
 unsigned long i = 0;
 for (int i = 0 ; i < 1000 ; i++) {
 counter += 1;
 }
 return NULL;
}

int main(void) {
 int i = 0;
 while(i++ < 2) {
 pthread_create(&(tid[i]), NULL, &doSomeThing, NULL);
 }
 pthread_join(tid[0], NULL);
 pthread_join(tid[1], NULL);
 printf(“Counter %d \n”, counter);
 return 0;
}

What will be the
final answer?

crooks@laptop> gcc concurrency.c -o
concurrency –pthread

crooks@laptop> ./concurrency

Counter 2000

crooks@laptop> ./concurrency

Counter 1937

crooks@laptop> ./concurrency

Counter 1899

5.69Crooks CS162 © UCB Fall 2023

With great power comes great concurrency

Protection is at process level.

Threads not isolated.
Share an address space.

Non-deterministic interleaving of threads

T1 T1 T1 T2 T2 T2

T1 T2 T2 T1 T1 T2

T2 T2 T2 T1 T1 T1

5.70Crooks CS162 © UCB Fall 2023

With great power comes great concurrency

Public Enemy #1:
THE RACE CONDITION

Next four lectures: how can we regulate access to
shared data across threads?

	CS162�Operating Systems and�Systems Programming�Lecture 5��File Descriptors (Continued)�OS Library�Threads and the Thread API��
	Recall: Input/Output in Linux
	Goals For Today
	Recall: File Descriptors
	Manipulating FDs
	Manipulating FDs (2)
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Duplicating FDs!
	Duplicating FDs!
	Duplicating FDs!
	Duplicating FDs!
	Duplicating FDs!
	Duplicating FDs!
	Forking FDs
	Forking FDs
	Interprocess Communication: Pipes
	Single-Process Pipe Example
	Pipes Between Processes
	Pipes Between Processes
	Pipes Between Processes
	IPC across machines: Sockets
	Namespaces for Network Communication
	Sockets in concept
	Client Protocol
	Server Protocol
	Summary: Input/Output Unix
	Goal 2: High-Level Systems API
	OS Library
	OS Library (Standard Libraries)
	OS Library (Standard Libraries)
	From FDs to Files
	C High-Level File API
	C Streams: Char-by-Char I/O
	From Syscall to Library Call
	FILE* is Buffered IO
	API Benefit
	Performance Benefit
	Great Power => Great Responsibility
	Avoid Mixing FILE* and File Descriptors
	Goal 2: Introducing the Thread
	Real-World Concurrency
	OS Concurrency
	What is a thread?
	What is a thread?
	Why do we need threads?
	Thread ≠ Process
	All you need is love (and a stack)
	All you need is love (and a stack)
	One Thread, Two Abstractions
	User Threads
	Kernel Threads
	User Threads vs Kernel Threads
	(Kernel) Threads in Linux
	(Kernel) Threads in Linux
	OS Library API for Threads (pThreads)
	Pthread Example
	Fork-Join Pattern
	Revisit the Server Protocol
	Multiprocess Multithreaded server!
	Reviewing the pthread_create(…)
	With great power comes great concurrency
	With great power comes great concurrency
	With great power comes great concurrency

