
CS162
Operating Systems and
Systems Programming

Lecture 6
Concurrency

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, ,
Alison Norman and Lorenzo Alvisi

6.2Crooks CS162 © UCB Fall 2023

Goals for Today

• Threads and more threads

• Challenges and Pitfalls of Concurrency

• Synchronization Operations/Critical Sections

• How to build a lock?

• Atomic Instructions

6.3Crooks CS162 © UCB Fall 2023

What is a thread?

A single execution sequence that represents
a separately schedulable task

Virtualizes the processor.
Each thread runs on a dedicated virtual processor (with variable

speed). Infinitely many such processors.

Threads enable users to define each task with sequential code.
But run each task concurrently

Presenter Notes
Presentation Notes
 Thread is a single execution sequence that represents a separately schedulable task. What do I mean by this? Well, by single execution sequence, a need that each thread executes a linear sequence of instructions. So for instance, if there's three of us in a house in the morning trying to get dressed. Three threads of execution. There is myself. There is going to put a t-shirt on, followed by a pair of trousers, followed by my socks, followed by my shoes. There is Jack here who is going to also separately and independently for me, going to put on a T-shirt, a pair of trousers, socks, and shoes, as well as deep Dee, who is going to have to do the same. These all three independently executing instruction streams. By separately schedulable, we mean that the OS can run, suspend or resume a thread at anytime. So let's assume that we have a bottleneck resource in this house where we have a single room in which people can get dressed. The OS will be able to independently puts me in the room, allow me to put my t-shirt on, Take Me Out to the room, predict t in the room. Allow her to put her tee shirt and trousers on the knee back in the room so that I can put on my trousers that Jacqueline let him get fully dressed for Deepti back in the room so that she can finish getting dressed. And then finally take her out and put me back in the room so that I can also finish getting dressed.

6.4Crooks CS162 © UCB Fall 2023

What is a thread?

1

CPU

2

CPU

N

CPU

3

CPU

…

Programmer Abstraction

1

CPU

3

Physical Reality

2

n

…

…

Presenter Notes
Presentation Notes
The main benefit of threads is that they virtualize the processor. Each thread runs on a dedicated virtual processor, and it can be infinitely many such processes. So to give you the example of the, to go back to the getting dressed example. By allowing my threads to suspend, reexecute, suspend we execute. I was able to provide the three inhabitants of this house would be illusion that they had all a single dressing room dedicated themselves. Instead, I was timesharing and multiplexing that dressing room by a lion need to make a little progress, kicking me out, and then resuming my execution once Deepti and Jack's execution has finished. So this is what I mean when we can provide processes with variable speed. If I were to try and give the illusion that they were dressing rooms like the one I was talking about. I could do this, but the speed at which I could drag got dressed in the morning drastically decrease my variable speed. We mean that while we can provide the abstraction of dedicated, infinitely many such processes, we can't invent physical resources. So the more threads we have in the system, the slower each one will run.

6.5Crooks CS162 © UCB Fall 2023

Recall: Thread ≠ Process

Processes defines the granularity at which the OS
offers isolation and protection

Threads capture concurrent sequences of computation

Processes consist of one or more threads!

Process
Protection

Thread
Concurrency

Presenter Notes
Presentation Notes
So each thread captures a linear sequence of computation. And together a group of threads capture concurrent sequences of computation. In practice, what you'll see is it processes consist of one or more threads, and that's the relationship between them. Processes are about isolation and protection. If you want the full walls inside of which one or multiple threads can execute. The process is about protection. Thread is all about concurrency. So let's look at how threads are actually implemented in the code. Well, I'm going to claim that all you need is a stomach. Threads run inside the same person and other foods not isolated from each other. So there's no protection between threads. This means that they share an address space and they can share Iowa State to just file descriptors. In contrast, they all have an independent sequence of instructions. Execute disjoint instructions to streams, which mean that they do need their own execution contexts. Specifically, they're going to need their own individual stock. And they go to need their own notion of register state, including their own instruction pointer, stack pointer, and base point. Again, because we're not required to provide protection between threads. Threads can show the address space, the code and data segment, and the IO state. However, because threads execute disjoint instruction streams, we need to provide them with both an individual stock. Individual set of registers

6.6Crooks CS162 © UCB Fall 2023

All you need is love (and a stack)

No protection

Threads inside the same
process and are not

isolated from each other

Individual execution

Threads execute disjoint
instruction streams. Need
own execution context

Share an address space
& share IO state (FDs)

Individual stack, register state
(including EIP, ESP, EBP)

6.7Crooks CS162 © UCB Fall 2023

PC
B

All you need is love (and a stack)

Code

Data

File Descriptor
Table

TCB
Thread 1

Saved
Registers

Heap

Stack

Metadata

TCB
Thread 2

Saved
Registers

Stack

Metadata

6.8Crooks CS162 © UCB Fall 2023

Recall: Threads in Linux

Everything is a thread (task_struct)

Scheduler only schedules task_struct

Processes are better viewed as the containers
in which threads execute

To fork a process:

Invoke clone(…)

To create a thread:

Invoke clone(CLONE_VM | CLONE_FS |
CLONE_FILES | CLONE_SIGHAND, 0)

CLONE_VM: Share address space. CLONE_FS: share file system.
CLONE_FILES: share open files. CLONE_SIGHAND: share handlers with

parents

6.9Crooks CS162 © UCB Fall 2023

OS Library API for Threads (pThreads)

int pthread_create(pthread_t *thread, …
 void *(*start_routine)(void*), void *arg);

Thread created and runs start_routine

void pthread_exit(void *value_ptr);
Terminates thread and makes value_ptr available to any

successful join

int pthread_yield();
Causes thread to yield the CPU to other threads

int pthread_join(pthread_t thread, void **value_ptr);
Suspends execution of calling thread until target thread

terminates.

Presenter Notes
Presentation Notes
This declaration might look a little complex (particularly if you haven’t used function pointers in C), but actually it’s not too bad. There are four arguments: thread, attr, start routine, and arg. The first,thread, is a pointer to a structure of type pthread t; we’ll use this structure to interact with this thread, and thus we need to pass it to pthread create() in order to initialize it.��The second argument, attr, is used to specify any attributes this thread might have. Some examples include setting the stack size or perhaps information about the scheduling priority of the thread. An attribute is initialized with a separate call to pthread attr init(); see the manual page for details. However, in most cases, the defaults will be fine; inthis case, we will simply pass the value NULL in.The third argument is themost complex, but is really just asking: which function should this thread start running in? In C, we call this a function pointer, and this one tells us the following is expected: a function name (start routine), which is passed a single argument of type void * (as indicated in the parentheses after start routine), and which returns a value of type void * (i.e., a void pointer).

6.10Crooks CS162 © UCB Fall 2023

Pthread Example

void *mythread(void *arg) {
printf("%s\n", (char *) arg);

 return NULL;
 }

 int main(int argc, char *argv[]) {
 pthread_t p1, p2;
 printf("main: begin\n");
 pthread_create(&p1, NULL, mythread, "A");
 pthread_create(&p2, NULL, mythread, "B");
 // join waits for the threads to finish
 pthread_join(p1, NULL);
 pthread_join(p2, NULL);
 printf("main: end\n");
}

6.11Crooks CS162 © UCB Fall 2023

Fork-Join Pattern

Main thread creates (forks) collection of sub-threads
passing them args to work on…

… and then joins with them, collecting results.

create

exit

join

Presenter Notes
Presentation Notes
Zooming back out to the programming level, threads are going to enable what we’re going to call a fork-join pattern, where a main thread is going to spawn a bunch of threads, join on these threads, waiting for them to finish. A good of example of that is if you want to count the lines of a very large file. The main thread could split the work into 4 threads, with each thread counting the number of lines in its subfile, and returning its subcount. The main thread would then collect the returned values after calling join, and return the final result.

6.12Crooks CS162 © UCB Fall 2023

// Socket setup code elided…

while (1) {

 // Accept a new client connection, obtaining a new socket

 int conn_socket = accept(server_socket, NULL, NULL);
 pid_t pid = fork();
 if (pid == 0) { // I am the child

 close(server_socket);
 serve_client(conn_socket);

 close(conn_socket);
 exit(0);

 } else { // // I am the parent

 close(conn_socket);
 }

}

close(server_socket);

Revisit the Server Protocol

How would you
rewrite the

concurrent server
example using

threads rather than
processes?

Presenter Notes
Presentation Notes
Achieving this is actually pretty simple. We’re going to accept the connection before forking the child. Once we have forked the process, the child is going to close the server socket, serve the client, and close the connection socket. This is as before. One question I want to ask here is why do we bother closing the server socket in the child, especially as we want to call accept on it in later iterations of the while loop. Closing the server socket here in the child is necessary because we’ve made a copy of all the file descriptors when we forked(), and file descriptors are reference counted, so we want to make sure that we delete any dangling file pointers in children processes, who don’t need a reference to the server socket, only the parent does, so the server socket should oly remain open on the parent. At the parent, however, we’re simply going to close the connection socket, and start the second iteration of the while loop, without waiting for the child to finish. This is going to ensure that we have as many processes as open client connections, enabling concurrency.

6.13Crooks CS162 © UCB Fall 2023

Multiprocess Multithreaded server!
// Socket setup code elided…

Int

while (1) {

 // Accept a new client connection, obtaining a new socket

 pthread_t tid;

 int conn_socket = accept(server_socket, NULL, NULL);
 int* arg = (int*) malloc(sizeof(int));

 *arg = conn_socket;

 pthread_create(&tid, NULL &serve_client, &arg);
}

close(server_socket);

6.14Crooks CS162 © UCB Fall 2023

Reviewing the pthread_create(…)
Do some work like a normal fn…
 place syscall # into %eax

 put args into registers %ebx, …
 special trap instruction

Mode switches & switches to kernel stack.
Saves recovery state

Jump to interrupt vector table at location 128.
Hands control to syscall_handler

Use %eax register to index into system call dispatch
table. Invoke do_fork() method. Initialise new TCB.

Mark thread READY. Push errcode into %eax

get return values from regs
 Do some more work like a normal fn…

Restore recovery state and mode switch

OS Library

OS Library

CPU

CPU

Kernel

6.15Crooks CS162 © UCB Fall 2023

With great power comes great concurrency

Protection is at process level.
Threads not isolated.

pthread_t tid[2];
int counter;

void* doSomeThing(void *arg) {
 unsigned long i = 0;
 for (int i = 0 ; i < 1000 ; i++) {
 counter += 1;
 }
 return NULL;
}

int main(void) {
 int i = 0;
 while(i++ < 2) {
 pthread_create(&(tid[i]), NULL, &doSomeThing, NULL);
 }
 pthread_join(tid[0], NULL);
 pthread_join(tid[1], NULL);
 printf(“Counter %d \n”, counter);
 return 0;
}

What will be the
final answer?

crooks@laptop> gcc concurrency.c -o
concurrency –pthread

crooks@laptop> ./concurrency

Counter 2000

crooks@laptop> ./concurrency

Counter 1937

crooks@laptop> ./concurrency

Counter 1899

6.16Crooks CS162 © UCB Fall 2023

With great power comes great concurrency

Protection is at process level.

Threads not isolated.
Share an address space.

Non-deterministic interleaving of threads

T1 T1 T1 T2 T2 T2

T1 T2 T2 T1 T1 T2

T2 T2 T2 T1 T1 T1

6.17Crooks CS162 © UCB Fall 2023

With great power comes great concurrency

Public Enemy #1:
THE RACE CONDITION

Today and next three lectures: how can we
regulate access to shared data across threads?

6.18Crooks CS162 © UCB Fall 2023

Multiprocessing vs Multiprogramming

Multiprocessing = Multiple CPUs

Multiprogramming ≡ Multiple Jobs or Processes

Multithreading ≡ Multiple threads per Process

6.19Crooks CS162 © UCB Fall 2023

Multiprocessing vs Multiprogramming
What does it mean to run two threads “concurrently”?

=> Scheduler is free to run threads in any order

=> Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

6.20Crooks CS162 © UCB Fall 2023

ATM Bank Server

Service a set of requests

Do so without corrupting database

Don’t hand out too much money

6.21Crooks CS162 © UCB Fall 2023

ATM bank server example
Suppose we wanted to implement a server process

to handle requests from an ATM network:

BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 ProcessRequest(op, acctId, amount);
 }
}

 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}

 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
}

Presenter Notes
Presentation Notes
What’s the problem with this scenario?

6.22Crooks CS162 © UCB Fall 2023

Event Driven Version of ATM server

Suppose we only had one CPU. Still like to overlap
I/O with computation. Without threads, we would have

to rewrite in event-driven style

 BankServer() {
 while(TRUE) {
 event = WaitForNextEvent();
 if (event == ATMRequest)
 StartOnRequest();
 else if (event == AcctAvail)
 ContinueRequest();
 else if (event == AcctStored)
 FinishRequest();
 }
 }

Presenter Notes
Presentation Notes
This technique is used for graphical programmingComplication:What if we missed a blocking I/O step?What if we have to split code into hundreds of pieces which could be blocking?

6.23Crooks CS162 © UCB Fall 2023

Can Threads Make This Easier?

Threads yield overlapped I/O and computation without
“deconstructing” code into non-blocking fragments

One thread per request

Requests proceeds to completion, blocking as required

6.24Crooks CS162 © UCB Fall 2023

Can Threads Make This Easier?
Suppose we wanted to implement a server process

to handle requests from an ATM network:

BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 START_THREAD(ProcessRequest(op, acctId, amount))
 }
}

 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}

 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
}

Presenter Notes
Presentation Notes
What’s the problem with this scenario?

6.25Crooks CS162 © UCB Fall 2023

Remember the Race Condition …
Shared state can get corrupted

 Thread 1 Thread 2

 load r1, acct->balance
 load r1, acct->balance
 add r1, amount2
 store r1, acct->balance
 add r1, amount1
 store r1, acct->balance

6.26Crooks CS162 © UCB Fall 2023

Many Possible Executions

6.27Crooks CS162 © UCB Fall 2023

Problem is at the Lowest Level
Most of the time, threads are working on
separate data, so scheduling doesn’t matter

 Thread A Thread B
 x = 1; y = 2;

However, what about (Initially, y = 12):

Thread A Thread B
x = 1; y = 2;
x = y+1; y = y*2;

What if two threads are both writing to x?

Presenter Notes
Presentation Notes
X could be (13, 5, 3)

6.28Crooks CS162 © UCB Fall 2023

Atomic Operations

An operation that always runs to completion
or not at all

It is indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

Fundamental building block
 If no atomic operations, then have no way for threads

to work together

Presenter Notes
Presentation Notes
To understand a concurrent program, we need to know what the underlying indivisible operations are!

6.29Crooks CS162 © UCB Fall 2023

Atomic Operations

On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic

Consequently – weird example that produces “3” on
previous slide can’t happen

Many instructions are not atomic
–Double-precision floating point store often not atomic
–VAX and IBM 360 had an instruction to copy a

whole array

Presenter Notes
Presentation Notes
To understand a concurrent program, we need to know what the underlying indivisible operations are!

6.30Crooks CS162 © UCB Fall 2023

Another Concurrent Program Example
Two threads, A and B, compete with each other

 Thread A Thread B
 i = 0; i = 0;

 while (i < 10) while (i > -10)
 i = i + 1; i = i – 1;
 printf(“A wins!”); printf(“B wins!”);

Assume that memory loads and stores are atomic,
but incrementing and decrementing are not atomic

What happens?

6.31Crooks CS162 © UCB Fall 2023

Definitions

Synchronization
Using atomic operations to ensure cooperation

between threads

Mutual Exclusion
Ensuring that only one thread does a particular

thing at a time

Critical Section
Piece of code that only one thread can execute
at once. Only one thread at a time will get into

this section of code

Presenter Notes
Presentation Notes
For now, only loads and stores are atomicWe are going to show that its hard to build anything useful with only reads and writesOne thread excludes the other while doing its taskCritical section is the result of mutual exclusionCritical section and mutual exclusion are two ways of describing the same thing

6.32Crooks CS162 © UCB Fall 2023

Locks

Prevents someone from doing something

Lock() before entering critical section and before
accessing shared data

Unlock() when leaving, after accessing shared data

Wait if locked

Important idea:
All synchronization involves waiting

6.33Crooks CS162 © UCB Fall 2023

Locks in PThreads

Locks need to be allocated and initialized:
– structure Lock mylock or pthread_mutex_t mylock;

– lock_init(&mylock) or mylock =PTHREAD_MUTEX_INITIALIZER;

Locks provide two atomic operations:

– acquire(&mylock) – wait until lock is free; then mark it as
busy

– release(&mylock) – mark lock as free
»Should only be called by a thread that currently holds

the lock

Presenter Notes
Presentation Notes
After this returns, we say the calling thread holds the lock

6.34Crooks CS162 © UCB Fall 2023

How would you fix the ATM problem?

(No, getting rid of money is not an
option for this class)

6.35Crooks CS162 © UCB Fall 2023

Identify critical sections (atomic instruction sequences)
and add locking

 Deposit(acctId, amount) {
 acquire(&mylock) // Wait if someone else in critical section!

 acct = GetAccount(actId);
 acct->balance += amount;
 StoreAccount(acct);

 release(&mylock) // Release someone into critical section
 }

Fix banking problem with Locks!

Critical Section

6.36Crooks CS162 © UCB Fall 2023

Thread CThread AThread B

Thread A

Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

acquire(&mylock)

release(&mylock)
Critical Section

Threads serialized by lock
through critical section.

Only one thread at a time

6.37Crooks CS162 © UCB Fall 2023

Threaded programs must work for all interleavings
of thread instruction sequences

Cooperating threads inherently non-deterministic and
non-reproducible

Really hard to debug unless carefully designed!

Correctness Requirements

6.38Crooks CS162 © UCB Fall 2023

Machine for radiation therapy

Software control of electron
accelerator and electron beam/

Xray production

Software control of dosage

Software errors caused the
death of several patients

Therac-25

Presenter Notes
Presentation Notes
A series of race conditions on �shared variables and poor �software design“They determined that data entry speed during editing was the key factor in producing the error condition: If the prescription data was edited at a fast pace, the overdose occurred.”Other examples to steal money

6.39Crooks CS162 © UCB Fall 2023

The Importance of Milk

6.40Crooks CS162 © UCB Fall 2023

The Importance of Milk

Great thing about OS’s – analogy between
problems in OS and problems in real life

Help you understand real life problems better

But, computers are much stupider than people

6.41Crooks CS162 © UCB Fall 2023

Motivating Example: “Too Much Milk”

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Presenter Notes
Presentation Notes
You’re sitting in class, hot day, milk does a body good. Go home, no milk, so go to storeRoommate leaves class late because prof is more long-winded than I am. Has same idea, but result is too much milk!Problem: two cooperating threads, not cooperating properly

6.42Crooks CS162 © UCB Fall 2023

Solve with a lock?
Lock prevents someone from doing something

–Lock before entering critical section
–Unlock when leaving

–Wait if locked

Fix the milk problem by putting a key on the refrigerator

Lock it and take key if you are going to go buy milk
Fixes too much: roommate angry if only wants OJ

6.43Crooks CS162 © UCB Fall 2023

Too Much Milk: Correctness Properties

Need to be careful about correctness of concurrent
programs, since non-deterministic

–Impulse is to start coding first, then when it
doesn’t work, pull hair out

–Instead, think first, then code

–Always write down behavior first

6.44Crooks CS162 © UCB Fall 2023

Too Much Milk: Correctness Properties

What are the correctness properties for the “Too
much milk” problem???

–Never more than one person buys
–Someone buys if needed

First attempt: Restrict ourselves to use only atomic
load and store operations as building blocks

6.45Crooks CS162 © UCB Fall 2023

Use a note to avoid buying too much milk:
–Leave a note before buying (kind of “lock”)
–Remove note after buying (kind of “unlock”)
–Don’t buy if note (wait)

Suppose a computer tries this
(remember, only memory read/write are atomic)

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

Too Much Milk: Solution #1

Presenter Notes
Presentation Notes
* This is a fate worse than failure! Code that usually works is way worse than outright broken code

6.46Crooks CS162 © UCB Fall 2023

Too Much Milk: Solution #1

 Thread A Thread B
 if (noMilk) {

 if (noMilk) {
 if (noNote) {

 if (noNote) {
 leave Note;

 buy Milk;
 remove Note;
 }
 }
 leave Note;
 buy Milk;
 remove Note;

 }
 }

Presenter Notes
Presentation Notes
* This is a fate worse than failure! Code that usually works is way worse than outright broken code

6.47Crooks CS162 © UCB Fall 2023

Still too much milk but only occasionally!

Thread can get context switched after checking milk
and note but before buying milk!

Solution makes problem worse since fails intermittently
–Makes it really hard to debug…

–Must work despite what the dispatcher does!

Too Much Milk: Solution #1

Presenter Notes
Presentation Notes
* This is a fate worse than failure! Code that usually works is way worse than outright broken code

6.48Crooks CS162 © UCB Fall 2023

Too Much Milk: Solution #1½
Let’s try to fix this by placing note first

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove Note;

What happens here?
–Well, with human, probably nothing bad
–With computer: no one ever buys milk

Presenter Notes
Presentation Notes
Clearly the Note is not quite blocking enough

6.49Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #2

How about labeled notes?
–Now we can leave note before checking

Algorithm looks like this:
 Thread A Thread B
 leave note A; leave note B;

 if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

6.50Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #2

Possible for neither thread to buy milk
–Context switches at exactly the wrong times can lead

each to think that the other is going to buy

Really insidious:
–Extremely unlikely this would happen, but will at worse

possible time
–Probably something like this in UNIX

6.51Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #2: problem!

I’m not getting milk, You’re getting milk

This kind of lockup is called “starvation!”

6.52Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #3

 Thread A Thread B
 leave note A; leave note B;

 while (note B) {\\X if (noNote A) {\\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;

6.53Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #3

Both can guarantee that:
–It is safe to buy, or
–Other will buy, ok to quit

At X:
–If no note B, safe for A to buy,
–Otherwise wait to find out what will
happen

At Y:
–If no note A, safe for B to buy
–Otherwise, A is either buying or waiting
for B to quit

6.54Crooks CS162 © UCB Fall 2023

Case 1

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “leave note A” happens before “if (noNote A)”

6.55Crooks CS162 © UCB Fall 2023

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

• “leave note A” happens before “if (noNote A)”

6.56Crooks CS162 © UCB Fall 2023

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

Wait for
note B to be
removed

• “leave note A” happens before “if (noNote A)”

6.57Crooks CS162 © UCB Fall 2023

Case 2

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

6.58Crooks CS162 © UCB Fall 2023

Case 2

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

6.59Crooks CS162 © UCB Fall 2023

Case 2

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to be
removed

6.60Crooks CS162 © UCB Fall 2023

This Generalizes to 𝑛𝑛 Threads…

Leslie Lamport’s
“Bakery Algorithm”
(1974)

6.61Crooks CS162 © UCB Fall 2023

Solution #3 discussion
Solution #3 works, but it’s really unsatisfactory

–Really complex – even for this simple an
example
»Hard to convince yourself that this really works

–A’s code is different from B’s – what if lots of
threads?
»Code would have to be slightly different for
each thread

–While A is waiting, it is consuming CPU time
»This is called “busy-waiting”

Presenter Notes
Presentation Notes
There’s got to be a better way!Have hardware provide higher-level primitives than atomic load & storeBuild even higher-level programming abstractions on this hardware support

6.62Crooks CS162 © UCB Fall 2023

Too Much Milk: Solution #4?

Recall our target lock interface:
– acquire(&milklock) – wait until lock is free, then
grab

– release(&milklock) – Unlock, waking up anyone
waiting
–These must be atomic operations – if two threads
are waiting for the lock and both see it’s free,
only one succeeds to grab the lock

Then, our milk problem is easy:
 acquire(&milklock);
 if (nomilk)
 buy milk;
 release(&milklock);

6.63Crooks CS162 © UCB Fall 2023

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization
primitives using atomic operations

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Presenter Notes
Presentation Notes
Everything is pretty painful if only atomic primitives are load and storeNeed to provide primitives useful at user-level

	CS162�Operating Systems and�Systems Programming�Lecture 6��Concurrency �
	Goals for Today
	What is a thread?
	What is a thread?
	Recall: Thread ≠ Process
	All you need is love (and a stack)
	All you need is love (and a stack)
	Recall: Threads in Linux
	OS Library API for Threads (pThreads)
	Pthread Example
	Fork-Join Pattern
	Revisit the Server Protocol
	Multiprocess Multithreaded server!
	Reviewing the pthread_create(…)
	With great power comes great concurrency
	With great power comes great concurrency
	With great power comes great concurrency
	Multiprocessing vs Multiprogramming
	Multiprocessing vs Multiprogramming
	ATM Bank Server
	ATM bank server example
	Event Driven Version of ATM server
	Can Threads Make This Easier?
	Can Threads Make This Easier?
	Remember the Race Condition …
	Many Possible Executions
	Problem is at the Lowest Level
	Atomic Operations
	Atomic Operations
	Another Concurrent Program Example
	Definitions
	Locks
	Locks in PThreads
	How would you fix the ATM problem?
	Fix banking problem with Locks!
	Fix banking problem with Locks!
	Correctness Requirements
	Therac-25
	The Importance of Milk
	The Importance of Milk
	Motivating Example: “Too Much Milk”
	Solve with a lock?
	Too Much Milk: Correctness Properties
	Too Much Milk: Correctness Properties
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1½
	Too Much Milk Solution #2
	Too Much Milk Solution #2
	Too Much Milk Solution #2: problem!
	Too Much Milk Solution #3
	Too Much Milk Solution #3
	Case 1
	Case 1
	Case 1
	Case 2
	Case 2
	Case 2
	This Generalizes to 𝑛 Threads…
	Solution #3 discussion
	Too Much Milk: Solution #4?
	Where are we going with synchronization?

