CS162

Operating Systems and
ystems Programming
Lecture 7/

Concurrency

Professor Natacha Crooks

https://csl62.org/

Slides based on prior slide decks from David Culler, lon Stoica, John Kubiatowicz, ,

Alison Norman and Lorenzo Alvisi

Correctness Requirements

Threaded prog[rams must work for all interleavings
of thread instruction sequences

Cooperating threads inherently non-deterministic and
non-reproducible

Really hard to debug unless carefully designed!

Crooks CS162 © UCB Fall 2023

7.2

The Importance of Milk

The Importance of Milk

Great thing about QOS’s - analogy between
problems in OS and problems in real life

Help you understand real life problems better

But, computers are much stupider than people

Crooks CS162 © UCB Fall 2023

7.4

Solve with a lock?

Lock prevents someone from doing something
-Lock before entering critical section
-Unlock when leaving
-Wait if locked

Lock it and take key if you are going to go buy milk
Fixes too much: roommate angry if only wants O]

R e

\

Crooks CS162 © UCB Fall 2023

@

Fix the milk problem by putting a key on the refrigerator

7.5

Too Much Milk: Correctness Properties

What are the correctness properties for the “Too
much milk” problem??7?

~-Never more than one person buys
-Someone buys if needed

First attempt: Restrict ourselves to use only atomic
load and store operations as building blocks

Crooks CS162 © UCB Fall 2023

7.6

Too Much Milk: Solution #1

Use a note to avoid buying too much milk:
-~Leave a note before buying (kind of *“lock”)
-Remove note after buying (kind of ‘‘unlock”)

-Don’t buy if note (wait)

Suppose a computer tries this
(remember, only memory read/write are atomic)

: : N
if (noMilk) { by
if (noNote) { o \ifa
leave Note;
buy milk;
remove note;

Crooks CS162 © UCB Fall 2023

7.7

Too Much Milk: Solution #1

Thread A Thread B
if (noMilk) A

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;

buy Milk;
remove Note;
}
}
leave Note;
buy Milk;
remove Note;

}
}

Crooks CS162 © UCB Fall 2023

7.8

Too Much Milk: Solution

#1

Still too much milk

Thread can c?et context sthched after chcickmg milk

note but before buying m

Solution makes problem worse since fails

iLk!

—Makes it really hard to debug...

~Must work despite what the dispatc

— ~ e
-

\
*L/’ g)

-

Crooks CS162 © UCB Fall 2023

ger doesl

7.9

Too Much Milk: Solution #11/:

Let’'s try to fix this by placing note first

leave Note;

if (noMilk) {
if (noNote) {
) buy milk;

¥

remove Note;

What happens here?
-Well, with human, probably nothing bad
-With computer: no one ever buys milk

Crooks CS162 © UCB Fall 2023 7.10

Too Much Milk Solution #2

How about labeled notes?
-Now we can leave note before checking

Algorithm looks like this:

Thread A Thread B

leave note A; leave note B;

if (noNote B) { if (noNoteA) {
if (noMilk) { if (noMilk) {

buy Milk; buy Milk;

} }

} }

remove note A; remove note B;

Crooks CS162 © UCB Fall 2023 7.11

Too Much Milk Solution #2

Possible for neither thread to buy milk

-Context switches at exactly the wrong times can lead
each to think that the other is going to buy

Really insidious:
this would happen, but will at worse
possible time

-Probably something like this in UNIX

Crooks CS162 © UCB Fall 2023 7.12

Too Much Milk Solution #2: problem!

I’'m not getting milk, You're getting milk

This kind of lockup is called “starvation!”

Crooks CS162 © UCB Fall 2023 7.13

Too Much Milk Solution #3

Thread A Thread B

leave note A; leave note B;

while (note B) {\\X if (noNote A) {\\Y
do nothing; if (noMilk) {

} buy milk;

if (noMilk) { }
buy milk; }

} remove note B;

remove note A;

Crooks CS162 © UCB Fall 2023 7.14

Too Much Milk Solution #3

Both can guarantee that:
-t is safe to buy, or
-Other will buy, ok to quit

At Xx:

-If no note B, safe for A to buy,

~Qtherwise wait to find out what will
happen

At v:

-If no note A, safe for B to buy

-Otherwise, A is either buying or waiting
for B to quit

Crooks CS162 © UCB Fall 2023

7.15

Case 1

« “leave note A’ happens before “if (noNote A)”

[Ieave note A; happeneq leave note B;

while (note B) {\\ 5‘7££;g-~, if (noNote A) {\\Y
do nothing; if (noMilk) {

}s buy milk;

}
}

remove note B;

if (noMilk) {
buy milk;}
}

remove note A;

Crooks CS162 © UCB Fall 2023 7.16

Case 1

« “leave note A’ happens before “if (noNote A)”

| Teave note A; happeneq leave note B;

while (note B) {\\ 5‘7££;g-~, if (noNote A) {\\Y
do nothing; if (noMilk) {

}s buy milk;

}
}

remove note B;

if (noMilk) {
buy milk;}
}

remove note A;

Crooks CS162 © UCB Fall 2023 7.17

Case 1

« “leave note A’ happens before “if (noNote A)”

| Teave note A; happeneq leave note B;
while (note B) {\\ 5‘7££§§‘-» if (noNote A) {\\Y

do nothing; if (noMilk) {
}s buy milk;
:VthkW } }
| hote B to be
I removed _ _-~-remove note B;
if (noMilk) {
buy milk; }
}

remove note A;

Crooks CS162 © UCB Fall 2023 7.18

Case 2

« “if (noNote A)” happens before “leave note A”

leave note B;

(jf&gffg”' if (noNote A) {\\Y

leave note A; pefor® if (noMilk) {

while (note B) {\\X buy milk;
do nothing; }

¥ }

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

Crooks CS162 © UCB Fall 2023 7.19

Case 2

« “if (noNote A)” happens before “leave note A”

leave note B;

(jf&gffg”' if (noNote A) {\\Y

leave note A; pefor® if (noMilk) {

while (note B) {\\X buy milk;
do nothing; }

}s }

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

Crooks CS162 © UCB Fall 2023 7.20

Case 2

« “if (noNote A)” happens before “leave note A”

leave note B;

wwﬁdﬁd if (noNote A) {\\Y
leave note A; e”%ggérllf if (noMilk) {

while (note B) {\\X buy milk;
do nothing; : }
}s
- te B;
\Wait for P e (o
I'note B to be -7
Yremoved .~
if (noMilk) {
buy milk; }

¥

remove note A;

Crooks CS162 © UCB Fall 2023 7.21

This Generalizes to n Threads...

Leslie Lamport’s
“Bakery Algorithm”

(1974)

Computer G. Bell, D. Siewiorek,
Systems and S.H. Fuller, Edltnrs

A New Solution of
Dijkstra’s Concurrent
Programming Problem

Leslie Lamport _
Massachusetts Computer Associates, Inc.

A simple solution to the mutual exclusion problem is
presented which allows the system to continue to operate

Crooks CS162 © UCB Fall 2023

7.22

Solution #3 discussion

Solution #3 works, but it’s really unsatisfactory

—Really complex - even for this simple an
example

»Hard to convince yourself that this really works

~A’s code is different from B’s - what if lots of
threads?

»Code would have to be slightly different for
each thread

-While A is waiting, it is consuming CPU time

Crooks CS162 © UCB Fall 2023 7.23

Too Much Milk: Solution #47

Recall our target lock interface:

~-acquire(&milklock) - wait until lock is free, then
grab

-release(&milklock) - Unlock, waking up anyone
waiting

—~- These must be atomic operations - if two threads

are waiting for the lock and both see it's free,
only one succeeds to grab the lock

Then, our milk problem is easy:
acquire(&milklock);
if (nomilk)
buy milk;
release(&milklock);

Crooks CS162 © UCB Fall 2023 7.24

Where are we going with synchronization?

Implement various higher-level synchronization
primitives using atomic operations

Crooks CS162 © UCB Fall 2023 7.25

How to Implement Locks?

Prevents someone from doing something

Lock before entering critical section and
before accessing shared data

Unlock when leavinga after accessing shared
ata

O

Crooks CS162 © UCB Fall 2023 7.26

Hardware Lock Instruction?

Is this a good idea?
What about putting a task to sleep?

What is the interface between the
hardware and scheduler?

Complexity?
»Done in the Intel 432

»Each feature makes HW more complex
and slow

Crooks CS162 © UCB Fall 2023

7.27

How about disabling interrupts?

Can we build multi-instruction atomic operations?

Recall: dispatcher gets control in two ways.
»Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
»Preventing external events by disabling interrupts

Crooks CS162 © UCB Fall 2023 7.28

How about disabling interrupts?

Naive implementation of Llocks:

LockAcquire { disable Ints; }

LockRelease { enable Ints: }

Problems with this approach?

Crooks CS162 © UCB Fall 2023

7.29

How about disabling interrupts?

Consider following:

LockAcquire () ;
While (TRUE) {;}

Real-Time system—no guarantees on timing!
Critical Sections might be arbitrarily long
What happens with 1/O or other important events?
“Reactor about to meltdown. Help?”

Crooks CS162 © UCB Fall 2023

7.30

Disabling Interrupts - But more smartly

Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE; ‘“

Acquire() { Release() {

disable interrupts; disable interrupts;

if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleep(); Place on ready queue;
// Enable interrupts? } else {

value = FREE;

} else {)

} value = BUSY; enable interrupts;

enable interrupts; I

¥

Crooks CS162 © UCB Fall 2023

7.31

New Lock Implementation: Discussion

Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock

Acquire() {
disable interrupts;
if (value == BUSY) {)
put thread on wait queue; o
Go to sleep(); Critical

// Enable interrupts? >’ .
} else { Section

value = BUSY;
} -
enable interrupts;

¥

Note: unlike previous solution, the critical section (inside
Acquire()) is very short

Crooks CS162 © UCB Fall 2023 7.32

Interrupt Re-enable in Going to Sleep

What about re-enabling ints when going to
sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

} else {
value = BUSY;
}
enable interrupts;

Crooks CS162 © UCB Fall 2023 7.33

Interrupt Re-enable in Going to Sleep

Acquire() {
disable interrupts;
if (value == BUSY) {
puf thread on wait queue;
Go to sleep();
} else {
value = BUSY;

Enable Position

¥

enable interrupts;

¥

Before Putting thread on the wait queue?

Crooks CS162 © UCB Fall 2023 7.34

Interrupt Re-enable in Going to Sleep

What about re-enabling ints when going to sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;

Enable Position == sleep():

} else {
value = BUSY;
}
enable interrupts;

}

After putting the thread on the wait queue?

Crooks CS162 © UCB Fall 2023 7.35

Interrupt Re-enable in Going to Sleep

What about re-enabling ints when going to sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

Enable Position — T elZe {

value = BUSY;
}

enable interrupts;

}

After putting the thread on the wait queue?

Crooks CS162 © UCB Fall 2023 7.36

How to Re-enable After Sleep()?

In scheduler, since interrupts are disabled when you call sleep:
- Responsibility of the next thread to re-enable ints

- When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

Thread A Thread B

disabfé ints
sleep —_COnteyt

SWitch > sleep return
enable ints

disable int

«t sleep
sleep return conter.
enable ints “Tyitch
Crooks CS162 © UCB Fall 2023 7.37

Atomic Read-Modify-Write Instructions

Problems with previous solution:
- Can’t give lock implementation to users
- Doesn’t work well on multiprocessor

Alternative: atomic instruction sequences

— These instructions read a value and write a new value
atomically

is responsible for implementing this correctly
» on both uniprocessors (not too hard)

»and multiprocessors (requires help from cache
coherence protocol)

- Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

Crooks CS162 © UCB Fall 2023 7.38

Examples of Read-Modify-Write

e test&set (&address) { /* most architectures */
result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;
}
e swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp;
}

e compare&swap (&address, regl, reg2) { /* x86 (returns old value), 68000 */
if (regl == M[address]) { // If memory still == regl,

M[address] = reg2; // then put reg2 => memory
return success;
} else { // Otherwise do not change memory

return failure;

}

Crooks CS162 © UCB Fall 2023 7.39

Using of Compare&Swap for queues

addToQueue(&object) {
do { // repeat until no conflict
1d r1, M[root] // Get ptr to current head
st rl, M[object] // Save link in new object
} until (compare&swap(&root,rl,object));

|
| root | / next [—] next

next

New
Object

Crooks CS162 © UCB Fall 2023

7.40

Implementing Locks with test&set

Simple lock that doesn’t require entry into the kernel:

// (Free) Can access this memory location from user space!
int mylock = @; // Interface: acquire(&mylock);
// release(&mylock);

acquire(int *thelock) {
while (test&set(thelock)); // Atomic operation!
}

release(int *thelock) {
*thelock = 0©; // Atomic operation!

}

Crooks CS162 © UCB Fall 2023 7.41

Implementing Locks with test&set

Simple explanation:

—If lock is free, test&set reads 0O and sets lock=1l, so lock is
now busy.
It returns 0 so while exits.

—If lock is busy, test&set reads 1 and sets lock=1 (no change)
It returns 1, so while loop continues.

- When we set thelock = 0, someone else can get lock.

thread consumes cycles while waiting

- For multiprocessors: every test&set() is a write, which makes
value ping-pong around in cache (using lots of network BW)

Crooks CS162 © UCB Fall 2023 7.42

Problem: Busy-Waiting for Lock

Positives for this solution
—~Machine can receive interrupts
~User code can use this lock
-Works on a multiprocessor

Negatives
- This is very inefficient as thread will consume cycles
waiting
-Waiting thread may take cycles away from thread
holding lock (no one wins!)

- Homework/exam solutions should avoid busy-waiting

Crooks CS162 © UCB Fall 2023 7.43

Better Locks using test&set

Idea: only busy-wait to atomically check lock value

int guard = 0@; // Global Variable!

r' int mylock = FREE; // Interface: acquire(&mylock);
“ // release(&mylock);

acquire(int *thelock) {
// Short busy-wait time .
:] release(int *thelock) {
wzlli ﬁtistﬁs?f(guagd)), // Short busy-wait time
i ;uE :h:gad_;n Sjig éueue' while (testset(guard));

if anyone on wait queue {
go to sleep() & guard = 0; take thread off wait queue
// guard == 0 on wakup! Place on ready queue;

} else { } else {
*thelock = BUSY; *thelock = FREE;
guard = 0; } .

} guard = 0;

}

Crooks CS162 © UCB Fall 2023 7.44

Linux futex: Fast Userspace Mutex

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex op, int val,
const struct timespec *timeout);

uaddr points to a 32-bit value in user space
futex_op
- FUTEX_WAIT - if val == *uaddr sleep till FUTEX_WAKE

» Atomic check that condition still holds after we
disable interrupts (in kernell)

- FUTEX_WAKE - wake up at most val waiting threads

- FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More
interesting operations!

timeout

-ptr to a timespec structure that specifies a timeout
for the op

Crooks CS162 © UCB Fall 2023 7.45

Linux futex: Fast Userspace Mutex

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex op, int val,
const struct timespec *timeout);

Interface to the kernel sleep() functionality!
-Let thread put themselves to sleep - conditionally!

futex is not exposed in libc; it is used within the
implementation of pthreads

~Can be used to implement locks, semaphores,
monitors, etc...

Crooks CS162 © UCB Fall 2023

7.46

Example: First try: T&S and futex

int mylock = @; // Interface: acquire(&mylock);
// release(&mylock);

acquire(int *thelock) { release(int *thelock) {

while (test&set(thelock)) { thelock = @; // unlock
futex(thelock, FUTEX WAIT, 1); futex(&thelock, FUTEX_WAKE, 1);

} } }

Sleep interface by using futex - no busywaiting
No overhead to acquire lock

Every unlock has to call kernel to potentially wake
someone up - even if none

Crooks CS162 © UCB Fall 2023

7.47

Example: Try #2: T&S and futex

bool maybe = false;
int mylock = @; // Interface: acquire(&mylock,&maybe waiters);

// release(&mylock,&maybe waiters);
acquire(int *thelock, bool *maybe) { release(int*thelock, bool *maybe) {
while (test&set(thelock)) { thelock = 6;
// Sleep, since lock busy! if (*maybe) {
*maybe = true; *maybe = false;
futex(thelock, FUTEX WAIT, 1); // Try to wake up someone
futex(&value, FUTEX WAKE, 1);
// Make sure other sleepers not stuck }
*maybe = true; ¥

This is syscall-free in the uncontended case

— Temporarily falls back to syscalls if multiple waiters, or
concurrent acquire/release

e But it can be considerably optimized!
- See “Futexes are Tricky” by Ulrich Drepper

Crooks CS162 © UCB Fall 2023 7.48

https://dept-info.labri.fr/%7Edenis/Enseignement/2008-IR/Articles/01-futex.pdf

Where are we going with synchronization?

* We are going to implement various higher-level
synchronization primitives using atomic operations

-Everything is pretty painful if only atomic
primitives are load and store

~Need to provide primitives useful at user-level

Crooks CS162 © UCB Fall 2023 7.49

Higher-level Primitives than Locks

Goal of last couple of lectures:

-What is right abstraction for
synchronizing threads that share
memory?

-Want as high a level primitive as
possible

Synchronization is a way of coordinating
multiple concurrent activities that are using
shared state

- This lecture and the next presents
some ways of structuring sharing

Crooks CS162 © UCB Fall 2023

7.50

Producer-Consumer with a Bounded Buffer

|
u Producer consumer I-l-‘
|
Problem Definition '

—Producer(s) put things into a shared buffer
-Consumer(s) take them out

—Need synchronization to coordinate
producer/consumer

Don’t want producer and consumer to have to work
in lockstep, so put a Iflxed-SAZe buffer between
them

—Need to synchronize access to this buffer
—Producer needs to wait if buffer is full
-Consumer needs to wait if buffer is empty

Crooks CS162 © UCB Fall 2023 7.51

Producer-Consumer with a Bounded Buffer

Example 1: GCC compiler L e :
- Cpp | ccl | cc2 | as | 1d uproducerm Mlonsumerl-l-‘

Example 2: Coke machine

-Producer can put limited number of Cokes in
machine

—~Consumer can't take Cokes out if machine is
empty

Others: Web servers, Routers,

Crooks CS162 © UCB Fall 2023 7.52

Circular Buffer Data Structure (segquential case)

w
r

typedef struct buf ({
int write index;
int read index;
<type> *entries[BUFSIZE]; iz d; ;.

} buf t;

Insert: write & bump write ptr (engueue)
Remove: read & bump read ptr (dequeue)

How to tell if Full (on insert) Empty (on remove)?
And what do you do if it is?
What needs to be atomic?

Crooks CS162 © UCB Fall 2023 7.53

Circular Buffer - first cut

mutex buf lock = <initially unlocked>

Producer(item) {
acquire(&buf lock);
while (buffer full) {}; // Wait for a free slot

enqueue(item);
release(&buf _lock); \ _
} Will we ever come

out of the wait
Consumer() {

loop?
acquire(&buf lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();
release(&buf_lock);
return item

Crooks CS162 © UCB Fall 2023

7.54

Circular Buffer - 2nd cut

mutex buf lock = <initially unlocked>

Producer(item) {
acquire(&buf _lock);

while (buffer full) {release(&buf lock); acquire(&buf lock);}
What happens when one is
waiting for the other?

enqueue(item);
release(&buf _lock); \
} - Multiple cores ?
- Single core ?
Consumer() { ,
acquire(&buf lock);

while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();

release(&buf_lock);

return item

Crooks CS162 © UCB Fall 2023 7.55

Semaphores

Semaphores are a type of generalized lock

First defined by Dijkstra in late 60s

Main synchronization primitive used in original UNIX

Crooks CS162 © UCB Fall 2023 7.56

Semaphores

A Semaphore has a and
supports the following operations:

-Set value when you initialize

an atomic operation that waits for
semaphore to become positive, then decrements it

oy 1
» Think of this as the wait() operation

an atomic operation that increments the
semaphore by 1, waking up a waiting P, if any

» This of this as the signal() operation

Crooks CS162 © UCB Fall 2023 7.57

Semaphores Like Integers Except...

Semaphores are like integers, except:
-No negative values

-Only operations allowed are P and V - can’t read or
write value, except initially

—~Operations must be atomic
» Two P’s together can’t decrement value below zero

» Thread going to sleep in P won’t miss wakeup from
V- - even if both happen at same time

Crooks CS162 © UCB Fall 2023 7.58

Two Uses of Semaphores

Mutual Exclusion (initial value = 1)
Also called “Binary Semaphore” or “mutex”.
Can be used for mutual exclusion, just like a Llock:

semaP (&mysem) ;
// Critical section goes here
semaV (&mysem) ;

Crooks CS162 © UCB Fall 2023 7.59

Two Uses of Semaphores

Scheduling Constraints (initial value = 0)

Allow thread 1 to wait for a signal from thread 2

—thread 2 thread 1 when a given
oCCurs

Suppose you had to implement ThreadJoin which must
wait for thread to terminate:

Initial value of semaphore = 0
ThreadJoin {

semaP (&mysem) ;
}
ThreadFinish {
semaV(&mysem) ;

}

Crooks CS162 © UCB Fall 2023 7.60

	CS162�Operating Systems and�Systems Programming�Lecture 7��Concurrency �
	Correctness Requirements
	The Importance of Milk
	The Importance of Milk
	Solve with a lock?
	Too Much Milk: Correctness Properties
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1½
	Too Much Milk Solution #2
	Too Much Milk Solution #2
	Too Much Milk Solution #2: problem!
	Too Much Milk Solution #3
	Too Much Milk Solution #3
	Case 1
	Case 1
	Case 1
	Case 2
	Case 2
	Case 2
	This Generalizes to 𝑛 Threads…
	Solution #3 discussion
	Too Much Milk: Solution #4?
	Where are we going with synchronization?
	How to Implement Locks?
	Hardware Lock Instruction?
	How about disabling interrupts?
	How about disabling interrupts?
	How about disabling interrupts?
	Disabling Interrupts – But more smartly
	New Lock Implementation: Discussion
	Interrupt Re-enable in Going to Sleep
	Interrupt Re-enable in Going to Sleep
	Interrupt Re-enable in Going to Sleep
	Interrupt Re-enable in Going to Sleep
	How to Re-enable After Sleep()?
	Atomic Read-Modify-Write Instructions
	Examples of Read-Modify-Write
	Using of Compare&Swap for queues
	Implementing Locks with test&set
	Implementing Locks with test&set
	Problem: Busy-Waiting for Lock
	Better Locks using test&set
	Linux futex: Fast Userspace Mutex
	Linux futex: Fast Userspace Mutex
	Example: First try: T&S and futex
	Example: Try #2: T&S and futex
	Where are we going with synchronization?
	Higher-level Primitives than Locks
	Producer-Consumer with a Bounded Buffer
	Producer-Consumer with a Bounded Buffer
	Circular Buffer Data Structure (sequential case)
	Circular Buffer – first cut
	Circular Buffer – 2nd cut
	Semaphores
	Semaphores
	Semaphores Like Integers Except…
	Two Uses of Semaphores
	Two Uses of Semaphores

