
CS162
Operating Systems and
Systems Programming

Lecture 7
Concurrency

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz, ,
Alison Norman and Lorenzo Alvisi

7.2Crooks CS162 © UCB Fall 2023

Threaded programs must work for all interleavings
of thread instruction sequences

Cooperating threads inherently non-deterministic and
non-reproducible

Really hard to debug unless carefully designed!

Correctness Requirements

7.3Crooks CS162 © UCB Fall 2023

The Importance of Milk

7.4Crooks CS162 © UCB Fall 2023

The Importance of Milk

Great thing about OS’s – analogy between
problems in OS and problems in real life

Help you understand real life problems better

But, computers are much stupider than people

7.5Crooks CS162 © UCB Fall 2023

Solve with a lock?
Lock prevents someone from doing something

–Lock before entering critical section
–Unlock when leaving

–Wait if locked

Fix the milk problem by putting a key on the refrigerator

Lock it and take key if you are going to go buy milk
Fixes too much: roommate angry if only wants OJ

7.6Crooks CS162 © UCB Fall 2023

Too Much Milk: Correctness Properties

What are the correctness properties for the “Too
much milk” problem???

–Never more than one person buys
–Someone buys if needed

First attempt: Restrict ourselves to use only atomic
load and store operations as building blocks

7.7Crooks CS162 © UCB Fall 2023

Use a note to avoid buying too much milk:
–Leave a note before buying (kind of “lock”)
–Remove note after buying (kind of “unlock”)
–Don’t buy if note (wait)

Suppose a computer tries this
(remember, only memory read/write are atomic)

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

Too Much Milk: Solution #1

7.8Crooks CS162 © UCB Fall 2023

Too Much Milk: Solution #1

 Thread A Thread B
 if (noMilk) {

 if (noMilk) {
 if (noNote) {

 if (noNote) {
 leave Note;

 buy Milk;
 remove Note;
 }
 }
 leave Note;
 buy Milk;
 remove Note;

 }
 }

7.9Crooks CS162 © UCB Fall 2023

Still too much milk but only occasionally!

Thread can get context switched after checking milk
and note but before buying milk!

Solution makes problem worse since fails intermittently
–Makes it really hard to debug…

–Must work despite what the dispatcher does!

Too Much Milk: Solution #1

7.10Crooks CS162 © UCB Fall 2023

Too Much Milk: Solution #1½
Let’s try to fix this by placing note first

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove Note;

What happens here?
–Well, with human, probably nothing bad
–With computer: no one ever buys milk

7.11Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #2

How about labeled notes?
–Now we can leave note before checking

Algorithm looks like this:
 Thread A Thread B
 leave note A; leave note B;

 if (noNote B) { if (noNoteA) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

7.12Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #2

Possible for neither thread to buy milk
–Context switches at exactly the wrong times can lead

each to think that the other is going to buy

Really insidious:
–Extremely unlikely this would happen, but will at worse

possible time
–Probably something like this in UNIX

7.13Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #2: problem!

I’m not getting milk, You’re getting milk

This kind of lockup is called “starvation!”

7.14Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #3

 Thread A Thread B
 leave note A; leave note B;

 while (note B) {\\X if (noNote A) {\\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;

7.15Crooks CS162 © UCB Fall 2023

Too Much Milk Solution #3

Both can guarantee that:
–It is safe to buy, or
–Other will buy, ok to quit

At X:
–If no note B, safe for A to buy,
–Otherwise wait to find out what will
happen

At Y:
–If no note A, safe for B to buy
–Otherwise, A is either buying or waiting
for B to quit

7.16Crooks CS162 © UCB Fall 2023

Case 1

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “leave note A” happens before “if (noNote A)”

7.17Crooks CS162 © UCB Fall 2023

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

• “leave note A” happens before “if (noNote A)”

7.18Crooks CS162 © UCB Fall 2023

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

Wait for
note B to be
removed

• “leave note A” happens before “if (noNote A)”

7.19Crooks CS162 © UCB Fall 2023

Case 2

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

7.20Crooks CS162 © UCB Fall 2023

Case 2

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

7.21Crooks CS162 © UCB Fall 2023

Case 2

leave note B;
if (noNote A) {\\Y
 if (noMilk) {
 buy milk;
 }
}
remove note B;

leave note A;
while (note B) {\\X
 do nothing;
};

if (noMilk) {
 buy milk; }
}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to be
removed

7.22Crooks CS162 © UCB Fall 2023

This Generalizes to 𝑛𝑛 Threads…

Leslie Lamport’s
“Bakery Algorithm”
(1974)

7.23Crooks CS162 © UCB Fall 2023

Solution #3 discussion
Solution #3 works, but it’s really unsatisfactory

–Really complex – even for this simple an
example
»Hard to convince yourself that this really works

–A’s code is different from B’s – what if lots of
threads?
»Code would have to be slightly different for
each thread

–While A is waiting, it is consuming CPU time
»This is called “busy-waiting”

7.24Crooks CS162 © UCB Fall 2023

Too Much Milk: Solution #4?

Recall our target lock interface:
– acquire(&milklock) – wait until lock is free, then
grab

– release(&milklock) – Unlock, waking up anyone
waiting
–These must be atomic operations – if two threads
are waiting for the lock and both see it’s free,
only one succeeds to grab the lock

Then, our milk problem is easy:
 acquire(&milklock);
 if (nomilk)
 buy milk;
 release(&milklock);

7.25Crooks CS162 © UCB Fall 2023

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization
primitives using atomic operations

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

7.26Crooks CS162 © UCB Fall 2023

How to Implement Locks?

Prevents someone from doing something

Lock before entering critical section and
before accessing shared data

Unlock when leaving, after accessing shared
data

7.27Crooks CS162 © UCB Fall 2023

Hardware Lock Instruction?

Is this a good idea?

What about putting a task to sleep?

What is the interface between the
hardware and scheduler?

Complexity?
»Done in the Intel 432

»Each feature makes HW more complex
and slow

7.28Crooks CS162 © UCB Fall 2023

Can we build multi-instruction atomic operations?

Recall: dispatcher gets control in two ways.
»Internal: Thread does something to relinquish the CPU
»External: Interrupts cause dispatcher to take CPU

On a uniprocessor, can avoid context-switching by:
»Avoiding internal events (although virtual memory tricky)

»Preventing external events by disabling interrupts

How about disabling interrupts?

7.29Crooks CS162 © UCB Fall 2023

Naïve implementation of locks:

LockAcquire { disable Ints; }

LockRelease { enable Ints; }

Problems with this approach?

How about disabling interrupts?

7.30Crooks CS162 © UCB Fall 2023

Consider following:

LockAcquire();
While(TRUE) {;}

Real-Time system—no guarantees on timing!

Critical Sections might be arbitrarily long

What happens with I/O or other important events?

“Reactor about to meltdown. Help?”

How about disabling interrupts?

7.31Crooks CS162 © UCB Fall 2023

Disabling Interrupts – But more smartly

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;
}

Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

7.32Crooks CS162 © UCB Fall 2023

New Lock Implementation: Discussion
Why do we need to disable interrupts at all?
– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

Note: unlike previous solution, the critical section (inside
Acquire()) is very short

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Critical
Section

7.33Crooks CS162 © UCB Fall 2023

Interrupt Re-enable in Going to Sleep

What about re-enabling ints when going to
sleep?

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 } else {
 value = BUSY;
 }
 enable interrupts;
}

7.34Crooks CS162 © UCB Fall 2023

Interrupt Re-enable in Going to Sleep

Before Putting thread on the wait queue?

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Enable Position

7.35Crooks CS162 © UCB Fall 2023

Interrupt Re-enable in Going to Sleep
What about re-enabling ints when going to sleep?

After putting the thread on the wait queue?

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Enable Position

7.36Crooks CS162 © UCB Fall 2023

Interrupt Re-enable in Going to Sleep
What about re-enabling ints when going to sleep?

After putting the thread on the wait queue?

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 } else {
 value = BUSY;
 }
 enable interrupts;
}

Enable Position

7.37Crooks CS162 © UCB Fall 2023

How to Re-enable After Sleep()?
In scheduler, since interrupts are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
–When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

 Thread A Thread B
 .
 .
 disable ints
 sleep

 sleep return
 enable ints

 .
 .
 .

 disable int
 sleep

 sleep return
 enable ints
 .

7.38Crooks CS162 © UCB Fall 2023

Atomic Read-Modify-Write Instructions

Problems with previous solution:
– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

Alternative: atomic instruction sequences
– These instructions read a value and write a new value
atomically

– Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache
coherence protocol)

– Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

7.39Crooks CS162 © UCB Fall 2023

Examples of Read-Modify-Write

• test&set (&address) { /* most architectures */
 result = M[address]; // return result from “address” and
 M[address] = 1; // set value at “address” to 1
 return result;
}

• swap (&address, register) { /* x86 */
 temp = M[address]; // swap register’s value to
 M[address] = register; // value at “address”
 register = temp;
}

• compare&swap (&address, reg1, reg2) { /* x86 (returns old value), 68000 */
 if (reg1 == M[address]) { // If memory still == reg1,
 M[address] = reg2; // then put reg2 => memory
 return success;
 } else { // Otherwise do not change memory
 return failure;
 }
}

7.40Crooks CS162 © UCB Fall 2023

addToQueue(&object) {
 do { // repeat until no conflict
 ld r1, M[root] // Get ptr to current head
 st r1, M[object] // Save link in new object
 } until (compare&swap(&root,r1,object));
}

Using of Compare&Swap for queues

root next next

next
New

Object

7.41Crooks CS162 © UCB Fall 2023

Implementing Locks with test&set

Simple lock that doesn’t require entry into the kernel:

 // (Free) Can access this memory location from user space!
 int mylock = 0; // Interface: acquire(&mylock);
 // release(&mylock);

 acquire(int *thelock) {
 while (test&set(thelock)); // Atomic operation!
 }

 release(int *thelock) {
 *thelock = 0; // Atomic operation!
 }

7.42Crooks CS162 © UCB Fall 2023

Implementing Locks with test&set

Simple explanation:
– If lock is free, test&set reads 0 and sets lock=1, so lock is
now busy.
It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets lock=1 (no change)
It returns 1, so while loop continues.

–When we set thelock = 0, someone else can get lock.

Busy-Waiting: thread consumes cycles while waiting
– For multiprocessors: every test&set() is a write, which makes
value ping-pong around in cache (using lots of network BW)

7.43Crooks CS162 © UCB Fall 2023

Problem: Busy-Waiting for Lock

Positives for this solution
–Machine can receive interrupts
–User code can use this lock
–Works on a multiprocessor

Negatives
–This is very inefficient as thread will consume cycles
waiting
–Waiting thread may take cycles away from thread
holding lock (no one wins!)
– Homework/exam solutions should avoid busy-waiting!

7.44Crooks CS162 © UCB Fall 2023

Better Locks using test&set
Idea: only busy-wait to atomically check lock value

–

release(int *thelock) {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 *thelock = FREE;
 }
 guard = 0;

int guard = 0; // Global Variable!
int mylock = FREE; // Interface: acquire(&mylock);
 // release(&mylock);

acquire(int *thelock) {
 // Short busy-wait time
 while (test&set(guard));
 if (*thelock == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 // guard == 0 on wakup!
 } else {
 *thelock = BUSY;
 guard = 0;
 }
}

7.45Crooks CS162 © UCB Fall 2023

Linux futex: Fast Userspace Mutex

uaddr points to a 32-bit value in user space
 futex_op

– FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAKE
»Atomic check that condition still holds after we
disable interrupts (in kernel!)

– FUTEX_WAKE – wake up at most val waiting threads
– FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More
interesting operations!

 timeout
–ptr to a timespec structure that specifies a timeout
for the op

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
 const struct timespec *timeout);

7.46Crooks CS162 © UCB Fall 2023

Linux futex: Fast Userspace Mutex

Interface to the kernel sleep() functionality!
–Let thread put themselves to sleep – conditionally!

futex is not exposed in libc; it is used within the
implementation of pthreads

–Can be used to implement locks, semaphores,
monitors, etc…

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
 const struct timespec *timeout);

7.47Crooks CS162 © UCB Fall 2023

Example: First try: T&S and futex

Sleep interface by using futex – no busywaiting

No overhead to acquire lock

Every unlock has to call kernel to potentially wake
someone up – even if none

int mylock = 0; // Interface: acquire(&mylock);
 // release(&mylock);

acquire(int *thelock) {
 while (test&set(thelock)) {
 futex(thelock, FUTEX_WAIT, 1);
 }
}

release(int *thelock) {
 thelock = 0; // unlock
 futex(&thelock, FUTEX_WAKE, 1);

}

7.48Crooks CS162 © UCB Fall 2023

Example: Try #2: T&S and futex

This is syscall-free in the uncontended case
–Temporarily falls back to syscalls if multiple waiters, or

concurrent acquire/release
• But it can be considerably optimized!

–See “Futexes are Tricky” by Ulrich Drepper

release(int*thelock, bool *maybe) {
 thelock = 0;
 if (*maybe) {
 *maybe = false;
 // Try to wake up someone
 futex(&value, FUTEX_WAKE, 1);
 }
}

bool maybe = false;
int mylock = 0; // Interface: acquire(&mylock,&maybe_waiters);
 // release(&mylock,&maybe_waiters);

acquire(int *thelock, bool *maybe) {
 while (test&set(thelock)) {
 // Sleep, since lock busy!
 *maybe = true;
 futex(thelock, FUTEX_WAIT, 1);

 // Make sure other sleepers not stuck
 *maybe = true;
 }
}

https://dept-info.labri.fr/%7Edenis/Enseignement/2008-IR/Articles/01-futex.pdf

7.49Crooks CS162 © UCB Fall 2023

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations
–Everything is pretty painful if only atomic
primitives are load and store
–Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

7.50Crooks CS162 © UCB Fall 2023

Higher-level Primitives than Locks

Goal of last couple of lectures:
–What is right abstraction for
synchronizing threads that share

memory?
–Want as high a level primitive as

possible

Synchronization is a way of coordinating
multiple concurrent activities that are using

shared state
–This lecture and the next presents
some ways of structuring sharing

7.51Crooks CS162 © UCB Fall 2023

Producer-Consumer with a Bounded Buffer

Problem Definition
–Producer(s) put things into a shared buffer

–Consumer(s) take them out
–Need synchronization to coordinate

producer/consumer

Don’t want producer and consumer to have to work
in lockstep, so put a fixed-size buffer between

them
–Need to synchronize access to this buffer
–Producer needs to wait if buffer is full

–Consumer needs to wait if buffer is empty

Consumer
Consumer

Producer ConsumerBuffer
Producer

7.52Crooks CS162 © UCB Fall 2023

Producer-Consumer with a Bounded Buffer

Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

Example 2: Coke machine
–Producer can put limited number of Cokes in
machine
–Consumer can’t take Cokes out if machine is
empty

Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer

7.53Crooks CS162 © UCB Fall 2023

Insert: write & bump write ptr (enqueue)

Remove: read & bump read ptr (dequeue)

How to tell if Full (on insert) Empty (on remove)?
And what do you do if it is?
What needs to be atomic?

typedef struct buf {
 int write_index;
 int read_index;
 <type> *entries[BUFSIZE];

} buf_t;

w
r

di di+1di+2

Circular Buffer Data Structure (sequential case)

7.54Crooks CS162 © UCB Fall 2023

mutex buf_lock = <initially unlocked>

Producer(item) {
 acquire(&buf_lock);
 while (buffer full) {}; // Wait for a free slot
 enqueue(item);
 release(&buf_lock);
}

Consumer() {
 acquire(&buf_lock);
 while (buffer empty) {}; // Wait for arrival
 item = dequeue();
 release(&buf_lock);
 return item
}

Will we ever come
out of the wait
loop?

Circular Buffer – first cut

7.55Crooks CS162 © UCB Fall 2023

mutex buf_lock = <initially unlocked>

Producer(item) {
 acquire(&buf_lock);
 while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
 enqueue(item);
 release(&buf_lock);
}

Consumer() {
 acquire(&buf_lock);
 while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
 item = dequeue();
 release(&buf_lock);
 return item
}

What happens when one is
waiting for the other?
 - Multiple cores ?
 - Single core ?

Circular Buffer – 2nd cut ∅

7.56Crooks CS162 © UCB Fall 2023

Semaphores

Semaphores are a type of generalized lock

First defined by Dijkstra in late 60s

Main synchronization primitive used in original UNIX

7.57Crooks CS162 © UCB Fall 2023

Semaphores
A Semaphore has a non-negative integer value and

supports the following operations:

–Set value when you initialize

– Down() or P(): an atomic operation that waits for
semaphore to become positive, then decrements it

by 1
»Think of this as the wait() operation

– Up() or V(): an atomic operation that increments the
semaphore by 1, waking up a waiting P, if any

»This of this as the signal() operation

7.58Crooks CS162 © UCB Fall 2023

Semaphores Like Integers Except…

Semaphores are like integers, except:

–No negative values

–Only operations allowed are P and V – can’t read or
write value, except initially

–Operations must be atomic
»Two P’s together can’t decrement value below zero
»Thread going to sleep in P won’t miss wakeup from

V – even if both happen at same time

7.59Crooks CS162 © UCB Fall 2023

Two Uses of Semaphores

Mutual Exclusion (initial value = 1)

Also called “Binary Semaphore” or “mutex”.

Can be used for mutual exclusion, just like a lock:

 semaP(&mysem);
 // Critical section goes here

 semaV(&mysem);

7.60Crooks CS162 © UCB Fall 2023

Two Uses of Semaphores
Scheduling Constraints (initial value = 0)

Allow thread 1 to wait for a signal from thread 2
–thread 2 schedules thread 1 when a given event

occurs

Suppose you had to implement ThreadJoin which must
wait for thread to terminate:

 Initial value of semaphore = 0
 ThreadJoin {
 semaP(&mysem);
 }

 ThreadFinish {
 semaV(&mysem);
 }

	CS162�Operating Systems and�Systems Programming�Lecture 7��Concurrency �
	Correctness Requirements
	The Importance of Milk
	The Importance of Milk
	Solve with a lock?
	Too Much Milk: Correctness Properties
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1
	Too Much Milk: Solution #1½
	Too Much Milk Solution #2
	Too Much Milk Solution #2
	Too Much Milk Solution #2: problem!
	Too Much Milk Solution #3
	Too Much Milk Solution #3
	Case 1
	Case 1
	Case 1
	Case 2
	Case 2
	Case 2
	This Generalizes to 𝑛 Threads…
	Solution #3 discussion
	Too Much Milk: Solution #4?
	Where are we going with synchronization?
	How to Implement Locks?
	Hardware Lock Instruction?
	How about disabling interrupts?
	How about disabling interrupts?
	How about disabling interrupts?
	Disabling Interrupts – But more smartly
	New Lock Implementation: Discussion
	Interrupt Re-enable in Going to Sleep
	Interrupt Re-enable in Going to Sleep
	Interrupt Re-enable in Going to Sleep
	Interrupt Re-enable in Going to Sleep
	How to Re-enable After Sleep()?
	Atomic Read-Modify-Write Instructions
	Examples of Read-Modify-Write
	Using of Compare&Swap for queues
	Implementing Locks with test&set
	Implementing Locks with test&set
	Problem: Busy-Waiting for Lock
	Better Locks using test&set
	Linux futex: Fast Userspace Mutex
	Linux futex: Fast Userspace Mutex
	Example: First try: T&S and futex
	Example: Try #2: T&S and futex
	Where are we going with synchronization?
	Higher-level Primitives than Locks
	Producer-Consumer with a Bounded Buffer
	Producer-Consumer with a Bounded Buffer
	Circular Buffer Data Structure (sequential case)
	Circular Buffer – first cut
	Circular Buffer – 2nd cut
	Semaphores
	Semaphores
	Semaphores Like Integers Except…
	Two Uses of Semaphores
	Two Uses of Semaphores

