
CS162
Operating Systems and
Systems Programming

Lecture 8
Concurrency

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

8.2Crooks CS162 © UCB Fall 2023

Higher-level Primitives than Locks

Goal of last couple of lectures:
–What is right abstraction for
synchronizing threads that share

memory?
–Want as high a level primitive as

possible

Synchronization is a way of coordinating
multiple concurrent activities that are using

shared state
–This lecture and the next presents
some ways of structuring sharing

8.3Crooks CS162 © UCB Fall 2023

Recall: Atomic Read-Write

• test&set (&address) { /* most architectures */
 result = M[address]; // return result from “address” and
 M[address] = 1; // set value at “address” to 1
 return result;
}

• compare&swap (&address, reg1, reg2) { /* x86 (returns old value), 68000 */
 if (reg1 == M[address]) { // If memory still == reg1,
 M[address] = reg2; // then put reg2 => memory
 return success;
 } else { // Otherwise do not change memory
 return failure;
 }
}

8.4Crooks CS162 © UCB Fall 2023

Recall: futex - Fast Userspace Mutex

Interface to the kernel sleep() functionality!
–Let thread put themselves to sleep – conditionally!

futex is not exposed in libc; it is used within the
implementation of pthreads

–Can be used to implement locks, semaphores,
monitors, etc…

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
 const struct timespec *timeout);

8.5Crooks CS162 © UCB Fall 2023

Recall: How to use a futex

This is syscall-free in the uncontended case

Temporarily falls back to syscalls if multiple waiters,
or concurrent acquire/release

release(int*thelock, bool *maybe) {
 thelock = 0;
 if (*maybe) {
 *maybe = false;
 // Try to wake up someone
 futex(&thelock, FUTEX_WAKE, 1);
 }
}

bool maybe = false;
int mylock = 0; // Interface: acquire(&mylock,&maybe_waiters);
 // release(&mylock,&maybe_waiters);

acquire(int *thelock, bool *maybe) {
 while (test&set(thelock)) {
 // Sleep, since lock busy!
 *maybe = true;
 futex(thelock, FUTEX_WAIT, 1);

 // Make sure other sleepers not stuck
 *maybe = true;
 }
}

8.6Crooks CS162 © UCB Fall 2023

Semaphores

Semaphores are a type of generalized lock

First defined by Dijkstra in late 60s

Main synchronization primitive used in original UNIX

8.7Crooks CS162 © UCB Fall 2023

Semaphores
A Semaphore has a non-negative integer value and

supports the following operations:

–Set value when you initialize

– Down() or P(): an atomic operation that waits for
semaphore to become positive, then decrements it

by 1
»Think of this as the wait() operation

– Up() or V(): an atomic operation that increments the
semaphore by 1, waking up a waiting P, if any

»This of this as the signal() operation

8.8Crooks CS162 © UCB Fall 2023

Semaphores Like Integers Except…

Semaphores are like integers, except:

–No negative values

–Only operations allowed are P and V – can’t read or
write value, except initially

–Operations must be atomic
»Two P’s together can’t decrement value below zero
»Thread going to sleep in P won’t miss wakeup from

V – even if both happen at same time

8.9Crooks CS162 © UCB Fall 2023

Two Uses of Semaphores

Mutual Exclusion (initial value = 1)

Also called “Binary Semaphore” or “mutex”.

Can be used for mutual exclusion, just like a lock:

 semaP(&mysem);
 // Critical section goes here

 semaV(&mysem);

8.10Crooks CS162 © UCB Fall 2023

Two Uses of Semaphores
Scheduling Constraints (initial value = 0)

Allow thread 1 to wait for a signal from thread 2
–thread 2 schedules thread 1 when a given event

occurs

Example: suppose you had to implement ThreadJoin which
must wait for thread to terminate:

 Initial value of semaphore = 0
 ThreadJoin {
 semaP(&mysem);
 }
 ThreadFinish {
 semaV(&mysem);
 }

8.11Crooks CS162 © UCB Fall 2023

Bounded Buffer: Correctness constraints for solution

Correctness Constraints:

–Consumer must wait for producer to fill buffers, if
none full (scheduling constraint)

–Producer must wait for consumer to empty buffers, if
all full (scheduling constraint)

–Only one thread can manipulate buffer queue at a
time (mutual exclusion)

8.12Crooks CS162 © UCB Fall 2023

Bounded Buffer: Correctness constraints for solution

General rule of thumb:
Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

8.13Crooks CS162 © UCB Fall 2023

Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {
 semaP(&emptySlots); // Wait until space

}
 Consumer() {

 semaP(&fullSlots); // Check if there’s a coke

}

Let’s drink coke!

8.14Crooks CS162 © UCB Fall 2023

Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {
 semaP(&emptySlots); // Wait until space
 Enqueue(item);

}
 Consumer() {

 semaP(&fullSlots); // Check if there’s a coke
 item = Dequeue();

}

Let’s drink coke!

8.15Crooks CS162 © UCB Fall 2023

Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {
 semaP(&emptySlots); // Wait until space
 Enqueue(item);
 semaV(&fullSlots); // Tell consumers there is
 // more coke

}
 Consumer() {

 semaP(&fullSlots); // Check if there’s a coke
 item = Dequeue();

 semaV(&emptySlots); // tell producer need more
 return item;
}

Let’s drink coke!

8.16Crooks CS162 © UCB Fall 2023

Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {
 semaP(&emptySlots); // Wait until space

 semaP(&mutex);
 Enqueue(item);

 semaV(&mutex);
 semaV(&fullSlots); // Tell consumers there is more coke

 }
 Consumer() {

 semaP(&fullSlots); // Check if there’s a coke
 semaV(&mutex);

 item = Dequeue();
 semaV(&mutex);
 semaV(&emptySlots); // tell producer need more
 return item;
 }

Let’s drink coke!

8.17Crooks CS162 © UCB Fall 2023

Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {
 semaP(&emptySlots); // Wait until space
 semaP(&mutex); // Wait until machine free
 Enqueue(item);
 semaV(&mutex);
 semaV(&fullSlots); // Tell consumers there is
 // more coke
}

 Consumer() {
 semaP(&fullSlots); // Check if there’s a coke
 semaP(&mutex); // Wait until machine free
 item = Dequeue();
 semaV(&mutex);
 semaV(&emptySlots); // tell producer need more
 return item;
}

fullSlots signals coke

emptySlots
signals space

Let’s drink coke!

Critical sections
using mutex
protect integrity of
the queue

8.18Crooks CS162 © UCB Fall 2023

Discussion about Solution

Why asymmetry?

–Producer does: semaP(&emptyBuffer),
semaV(&fullBuffer)

–Consumer does: semaP(&fullBuffer),
semaV(&emptyBuffer)

Does order matter? What if we decrement mutex
before full/emptyBuffer?

8.19Crooks CS162 © UCB Fall 2023

Semaphores are good but…

Semaphores are a huge step up; just think of trying to
do the bounded buffer with only loads and stores or

even with locks!

Problem is that semaphores are dual purpose:
–They are used for both mutex and scheduling

constraints
–Example: the fact that flipping of P’s in bounded
buffer gives deadlock is not immediately obvious.
How do you prove correctness to someone?

8.20Crooks CS162 © UCB Fall 2023

Monitors are better!

Use locks for mutual exclusion and condition variables
for scheduling constraints

Monitor: a lock and zero or more condition variables
for managing concurrent access to shared data

A monitor is a paradigm for concurrent programming
- Some languages like Java provide this natively

- Most others use actual locks and condition variables

8.21Crooks CS162 © UCB Fall 2023

Condition Variables

A queue of threads waiting for something (a condition)
inside a critical section

Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

Contrast to semaphores: Can’t wait inside critical
section

8.22Crooks CS162 © UCB Fall 2023

Condition Variables

Operations:
– Wait(&lock): Atomically release lock and go to sleep.

Re-acquire lock later, before returning.
– Signal(): Wake up one waiter, if any

– Broadcast(): Wake up all waiters

Rule: Must hold lock when doing condition variable ops!

8.23Crooks CS162 © UCB Fall 2023

Monitor with Condition Variables

Lock: the lock provides mutual exclusion to shared data
–Always acquire before accessing shared data structure

–Always release after finishing with shared data
–Lock initially free

Condition Variable: a queue of threads waiting for
something inside a critical section

–Key idea: make it possible to go to sleep inside
critical section by atomically releasing lock at time

we go to sleep

8.24Crooks CS162 © UCB Fall 2023

Infinite Synchronized Buffer (with condition variable)
 lock buf_lock; // Initially unlocked
 condition buf_CV; // Initially empty
 queue queue; // Actual queue!

8.25Crooks CS162 © UCB Fall 2023

Infinite Synchronized Buffer (with condition variable)
 lock buf_lock; // Initially unlocked
 condition buf_CV; // Initially empty
 queue queue; // Actual queue!

 Producer(item) {
 acquire(&buf_lock); // Get Lock
 enqueue(&queue,item); // Add item
 cond_signal(&buf_CV); // Signal any waiters
 release(&buf_lock); // Release Lock
 }

8.26Crooks CS162 © UCB Fall 2023

Infinite Synchronized Buffer (with condition variable)
 lock buf_lock; // Initially unlocked
 condition buf_CV; // Initially empty
 queue queue; // Actual queue!

 Producer(item) {
 acquire(&buf_lock); // Get Lock
 enqueue(&queue,item); // Add item
 cond_signal(&buf_CV); // Signal any waiters
 release(&buf_lock); // Release Lock
 }

 Consumer() {
 acquire(&buf_lock); // Get Lock
 if (isEmpty(&queue)) {
 cond_wait(&buf_CV, &buf_lock); // If empty, sleep
 }
 item = dequeue(&queue); // Get next item
 release(&buf_lock); // Release Lock
 return(item);
 }

8.27Crooks CS162 © UCB Fall 2023

Infinite Synchronized Buffer (with condition variable)
 lock buf_lock; // Initially unlocked
 condition buf_CV; // Initially empty
 queue queue; // Actual queue!

 Producer(item) {
 acquire(&buf_lock); // Get Lock
 enqueue(&queue,item); // Add item
 cond_signal(&buf_CV); // Signal any waiters
 release(&buf_lock); // Release Lock
 }

 Consumer() {
 acquire(&buf_lock); // Get Lock
 while (isEmpty(&queue)) {
 cond_wait(&buf_CV, &buf_lock); // If empty, sleep
 }
 item = dequeue(&queue); // Get next item
 release(&buf_lock); // Release Lock
 return(item);
 }

8.28Crooks CS162 © UCB Fall 2023

Mesa vs. Hoare monitors
Need to be careful about precise definition of signal and wait.

 while (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
 }
 item = dequeue(&queue); // Get next item

Why didn’t we do this?

 if (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
 }
 item = dequeue(&queue); // Get next item

Answer: depends on the type of scheduling
– Mesa-style: Named after Xerox-Park Mesa Operating System

» Most OSes use Mesa Scheduling!
– Hoare-style: Named after British logician Tony Hoare

8.29Crooks CS162 © UCB Fall 2023

Hoare monitors
Signaler gives up lock, CPU to waiter; waiter runs immediately
Then, Waiter gives up lock, processor back to signaler when it exits critical section or if it waits again

At first glance, this seems like good semantics
Waiter gets to run immediately, condition is still correct!

acquire(&buf_lock);
…
if (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock);
}
…
release(&buf_lock);

…
acquire(&buf_lock);
…
cond_signal(&buf_CV);
…
release(&buf_lock);

Lock, CPU

8.30Crooks CS162 © UCB Fall 2023

Mesa monitors
Signaler keeps lock and processor

Waiter placed on ready queue with no special priority

Practically, need to check condition again after wait
–By the time the waiter gets scheduled, condition

may be false again
–– so, just check again with the “while” loop

acquire(&buf_lock);
…
while (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock);
}
…
lock.Release();

…
acquire(&buf_lock)
…
cond_signal(&buf_CV);
…
release(&buf_lock));

Put waiting
thread on

ready queue

8.31Crooks CS162 © UCB Fall 2023

lock buf_lock = <initially unlocked>
condition isNotEmpty = <initially empty>
condition isNotFull = <initially empty>

Bounded Buffer – Attempt 4

8.32Crooks CS162 © UCB Fall 2023

lock buf_lock = <initially unlocked>
condition isNotEmpty= <initially empty>
condition isNotFull = <initially empty>

Producer(item) {
 acquire(&buf_lock);
 while (buffer full) { cond_wait(&isNotFull, &buf_lock); }
 enqueue(item);
 cond_signal(&isNotEmpty);
 release(&buf_lock);
}

Consumer() {
 acquire(buf_lock);
 while (buffer empty) { cond_wait(&isNotEmpty, &buf_lock); }
 item = dequeue();
 cond_signal(&isNotFull);
 release(buf_lock);
 return item
}

Bounded Buffer – Attempt 4

8.33Crooks CS162 © UCB Fall 2023

MESA semantics

For most operating systems, when a thread is
woken up by signal(), it is simply put on the

ready queue

It may or may not reacquire the lock
immediately!

–Another thread could be scheduled first and
"sneak in" to empty the queue

–Need a loop to re-check condition on
wakeup

Is this busy waiting?

Again: Why the while Loop?

8.34Crooks CS162 © UCB Fall 2023

Basic Structure of Mesa Monitor Program
Monitors represent the synchronization logic of

the program
–Wait if necessary

–Signal when change something so any waiting
threads can proceed

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

8.35Crooks CS162 © UCB Fall 2023

Readers/Writers Problem

Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time

» Only one writer at a time

R
R

R

W

8.36Crooks CS162 © UCB Fall 2023

Basic Readers/Writers Solution
Correctness Constraints:

–Readers can access database when no writers
–Writers can access database when no readers or writers
–Only one thread manipulates state variables at a time

Basic structure of a solution:
–Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

–Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

8.37Crooks CS162 © UCB Fall 2023

Basic Readers/Writers Solution

State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
»int WR: Number of waiting readers; initially = 0
»int AW: Number of active writers; initially = 0
»int WW: Number of waiting writers; initially = 0

»Condition okToRead = NIL
»Condition okToWrite = NIL

8.38Crooks CS162 © UCB Fall 2023

Code for a Reader
Reader() {
 // First check self into system
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 acquire(&lock);
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer
 release(&lock);
}

8.39Crooks CS162 © UCB Fall 2023

Writer() {
 // First check self into system
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 release(&lock);

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 acquire(&lock);
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 cond_broadcast(&okToRead); // Wake all readers
 }
 release(&lock);
}

Code for a Writer

8.40Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
Use an example to simulate the solution

Consider the following sequence of
operators:

–R1, R2, W1, R3

Initially: AR = 0, WR = 0, AW = 0,
WW = 0

8.41Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock)

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.42Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.43Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.44Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.45Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 accessing dbase (no other threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.46Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.47Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)
AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.48Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.49Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.50Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 and R2 accessing dbase

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Assume readers take a while to access database
Situation: Locks released, only AR is non-zero

8.51Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

8.52Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0

8.53Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1

8.54Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.55Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.56Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.57Crooks CS162 © UCB Fall 2023

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 comes along (R1, R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1

8.58Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 and R2 accessing dbase, W1 and R3 waiting

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}
Status:
• R1 and R2 still reading
• W1 and R3 waiting on okToWrite and okToRead, respectively

8.59Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.60Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.61Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.62Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.63Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 finishes (W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.64Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.65Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.66Crooks CS162 © UCB Fall 2023

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R1 signals a writer (W1 and R3 waiting)
AR = 0, WR = 1, AW = 0, WW = 1

8.67Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 1

8.68Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

8.69Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

8.70Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 accessing dbase (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

8.71Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

8.72Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

8.73Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

8.74Crooks CS162 © UCB Fall 2023

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 signaling readers (R3 still waiting)
AR = 0, WR = 1, AW = 0, WW = 0

8.75Crooks CS162 © UCB Fall 2023

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 gets signal (no waiting threads)

AR = 0, WR = 1, AW = 0, WW = 0

8.76Crooks CS162 © UCB Fall 2023

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 gets signal (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0

8.77Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R3 accessing dbase (no waiting threads)
AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.78Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R3 finishes (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.79Crooks CS162 © UCB Fall 2023

Simulation of Readers/Writers Solution
R3 finishes (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDbase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

8.80Crooks CS162 © UCB Fall 2023

Questions
Can readers starve? Consider Reader() entry
code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

What if we erase the condition check in
Reader exit?
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer

8.81Crooks CS162 © UCB Fall 2023

Questions
Further, what if we turn the signal() into
broadcast()
 AR--; // No longer active
 cond_broadcast(&okToWrite); // Wake up sleepers

Finally, what if we use only one condition
variable (call it “okContinue”) instead of two
separate ones?
–Both readers and writers sleep on this
variable
–Must use broadcast() instead of signal()

8.82Crooks CS162 © UCB Fall 2023

Code for a Reader
Reader() {
 // First check self into system
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 acquire(&lock);
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer
 release(&lock);
}

8.83Crooks CS162 © UCB Fall 2023

Writer() {
 // First check self into system
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 release(&lock);

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 acquire(&lock);
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 cond_broadcast(&okToRead); // Wake all readers
 }
 release(&lock);
}

Code for a Writer

8.84Crooks CS162 © UCB Fall 2023

Mesa Monitor Conclusion
Monitors represent the synchronization logic of the

program
–Wait if necessary

–Signal when change something so any waiting
threads can proceed

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

8.85Crooks CS162 © UCB Fall 2023

C-Language Support for Synchronization
C language: Pretty straightforward synchronization

Just make sure you know all the code paths out
of a critical section

 int Rtn() {
 acquire(&lock);
 …
 if (exception) {
 release(&lock);
 return errReturnCode;
 }
 …
 release(&lock);
 return OK;
}

8.86Crooks CS162 © UCB Fall 2023

Harder with more locks

void Rtn() {
 lock1.acquire();
 …
 if (error) {
 lock1.release();
 return;
 }
 …
 lock2.acquire();
 …
 if (error) {
 lock2.release()
 lock1.release();
 return;
 }
 …
 lock2.release();
 lock1.release();
}

Concurrency and Synchronization in C

8.87Crooks CS162 © UCB Fall 2023

C++ Language Support for Synchronization
Languages with exceptions like C++
–Languages that support exceptions are
problematic (easy to make a non-local exit

without releasing lock)

 void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }
–Notice that an exception in DoFoo() will exit

without releasing the lock!

8.88Crooks CS162 © UCB Fall 2023

C++ Language Support for Synchronization (con’t)
Must catch all exceptions in critical sections
–Catch exceptions, release lock, and re-
throw exception:

 void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

8.89Crooks CS162 © UCB Fall 2023

Much better: C++ Lock Guards
#include <mutex>
int global_i = 0;
std::mutex global_mutex;

void safe_increment() {
 std::lock_guard<std::mutex> lock(global_mutex);
 …
 global_i++;
 // Mutex released when ‘lock’ goes out of scope
}

8.90Crooks CS162 © UCB Fall 2023

Python with Keyword
More versatile than we show here (can be used to
close files, database connections, etc.)

lock = threading.Lock()
…
with lock: # Automatically calls acquire()
 some_var += 1
 …
release() called however we leave block

8.91Crooks CS162 © UCB Fall 2023

Java synchronized Keyword
Every Java object has an associated lock:

–Lock is acquired on entry and released on exit from a synchronized method
–Lock is properly released if exception occurs inside a synchronized method

–Mutex execution of synchronized methods (beware deadlock)
 class Account {
 private int balance;

 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

8.92Crooks CS162 © UCB Fall 2023

Java Support for Monitors
Along with a lock, every object has a single

condition variable associated with it

To wait inside a synchronized method:
– void wait();
– void wait(long timeout);

To signal while in a synchronized method:
– void notify();
– void notifyAll();

8.93Crooks CS162 © UCB Fall 2023

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization
primitives using atomic operations

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

	CS162�Operating Systems and�Systems Programming�Lecture 8��Concurrency �
	Higher-level Primitives than Locks
	Recall: Atomic Read-Write
	Recall: futex - Fast Userspace Mutex
	Recall: How to use a futex
	Semaphores
	Semaphores
	Semaphores Like Integers Except…
	Two Uses of Semaphores
	Two Uses of Semaphores
	Bounded Buffer: Correctness constraints for solution
	Bounded Buffer: Correctness constraints for solution
	Let’s drink coke!
	Let’s drink coke!
	Let’s drink coke!
	Let’s drink coke!
	Let’s drink coke!
	Discussion about Solution
	Semaphores are good but…
	Monitors are better!
	Condition Variables
	Condition Variables
	 Monitor with Condition Variables
	Infinite Synchronized Buffer (with condition variable)
	Infinite Synchronized Buffer (with condition variable)
	Infinite Synchronized Buffer (with condition variable)
	Infinite Synchronized Buffer (with condition variable)
	Mesa vs. Hoare monitors
	Hoare monitors
	Mesa monitors
	Bounded Buffer – Attempt 4
	Bounded Buffer – Attempt 4
	Again: Why the while Loop?
	Basic Structure of Mesa Monitor Program
	Readers/Writers Problem
	Basic Readers/Writers Solution
	Basic Readers/Writers Solution
	Code for a Reader
	Code for a Writer
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Questions
	Questions
	Code for a Reader
	Code for a Writer
	Mesa Monitor Conclusion
	C-Language Support for Synchronization
	Concurrency and Synchronization in C
	C++ Language Support for Synchronization
	C++ Language Support for Synchronization (con’t)
	Much better: C++ Lock Guards
	Python with Keyword
	Java synchronized Keyword
	Java Support for Monitors
	Where are we going with synchronization?

