
CS162
Operating Systems and
Systems Programming

Lecture 9
Monitors (Continued)

Scheduling
Core Concepts and Classic Policies

Professor Natacha Crooks
https://cs162.org/

Slides based on prior slide decks from David Culler, Ion Stoica, John Kubiatowicz,
Alison Norman and Lorenzo Alvisi

9.2Crooks CS162 © UCB Fall 2022

Recall: Monitors are better!

Use locks for mutual exclusion and condition variables
for scheduling constraints

Monitor: a lock and zero or more condition variables
for managing concurrent access to shared data

A monitor is a paradigm for concurrent programming
- Some languages like Java provide this natively

- Most others use actual locks and condition variables

9.3Crooks CS162 © UCB Fall 2022

Recall: Wait & Signal Pattern

acquire(&buf_lock);
…
while (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock);
}
…
lock.Release();

…
acquire(&buf_lock)
…
cond_signal(&buf_CV);
…
release(&buf_lock));

9.4Crooks CS162 © UCB Fall 2022

Hoare Semantics

acquire(&buf_lock);
…
if (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock);
}
…
lock.Release();

…
acquire(&buf_lock)
…
cond_signal(&buf_CV);
…
release(&buf_lock));

Thread A Thread B

1. When call signal, handover buf_lock to thread B.

2. Thread B gets immediately scheduled (nothing can run in
between).

3. Thread B eventually releases lock.

9.5Crooks CS162 © UCB Fall 2022

Mesa Semantics

acquire(&buf_lock);
…
while (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock);
}
…
lock.Release();

…
acquire(&buf_lock)
…
cond_signal(&buf_CV);
…
release(&buf_lock));

Thread A Thread B

1. When call signal, keep lock. Place Thread B on READY
queue (no special priority)

2. Thread A eventually releases buf_lock.
3. Thread B eventually gets scheduled and acquires buf_lock.
Thread C may have run in between.

4. Thread B eventually releases buf_lock.

9.6Crooks CS162 © UCB Fall 2022

Basic Structure of Mesa Monitor Program
Monitors represent the synchronization logic of

the program
–Wait if necessary

–Signal when change something so any waiting
threads can proceed

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

9.7Crooks CS162 © UCB Fall 2022

Readers/Writers Problem

Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time

» Only one writer at a time

R
R

R

W

9.8Crooks CS162 © UCB Fall 2022

Basic Readers/Writers Solution
Correctness Constraints:

–Readers can access database when no writers
–Writers can access database when no readers or writers
–Only one thread manipulates state variables at a time

Basic structure of a solution:
–Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

–Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

9.9Crooks CS162 © UCB Fall 2022

Basic Readers/Writers Solution

State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
»int WR: Number of waiting readers; initially = 0
»int AW: Number of active writers; initially = 0
»int WW: Number of waiting writers; initially = 0

»Condition okToRead = NIL
»Condition okToWrite = NIL

9.10Crooks CS162 © UCB Fall 2022

Code for a Reader
Reader() {
 // First check self into system
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 acquire(&lock);
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer
 release(&lock);
}

9.11Crooks CS162 © UCB Fall 2022

Writer() {
 // First check self into system
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 release(&lock);

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 acquire(&lock);
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 cond_broadcast(&okToRead); // Wake all readers
 }
 release(&lock);
}

Code for a Writer

9.12Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
Use an example to simulate the solution

Consider the following sequence of
operators:

–R1, R2, W1, R3

Initially: AR = 0, WR = 0, AW = 0,
WW = 0

9.13Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock)

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.14Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.15Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.16Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.17Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 accessing dbase (no other threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.18Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.19Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)
AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.20Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.21Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.22Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 and R2 accessing dbase

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Assume readers take a while to access database
Situation: Locks released, only AR is non-zero

9.23Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

9.24Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0

9.25Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1

9.26Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.27Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.28Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.29Crooks CS162 © UCB Fall 2022

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 comes along (R1, R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1

9.30Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 and R2 accessing dbase, W1 and R3 waiting

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}
Status:
• R1 and R2 still reading
• W1 and R3 waiting on okToWrite and okToRead, respectively

9.31Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.32Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.33Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.34Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.35Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 finishes (W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.36Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.37Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.38Crooks CS162 © UCB Fall 2022

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R1 signals a writer (W1 and R3 waiting)
AR = 0, WR = 1, AW = 0, WW = 1

9.39Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 1

9.40Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

9.41Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

9.42Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 accessing dbase (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

9.43Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0

9.44Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

9.45Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0

9.46Crooks CS162 © UCB Fall 2022

Writer() {
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 release(&lock);

 AccessDBase(ReadWrite);

 acquire(&lock);
 AW--;
 if (WW > 0){
 cond_signal(&okToWrite);
 } else if (WR > 0) {
 cond_broadcast(&okToRead);
 }
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 signaling readers (R3 still waiting)
AR = 0, WR = 1, AW = 0, WW = 0

9.47Crooks CS162 © UCB Fall 2022

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 gets signal (no waiting threads)

AR = 0, WR = 1, AW = 0, WW = 0

9.48Crooks CS162 © UCB Fall 2022

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 gets signal (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0

9.49Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R3 accessing dbase (no waiting threads)
AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.50Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R3 finishes (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.51Crooks CS162 © UCB Fall 2022

Simulation of Readers/Writers Solution
R3 finishes (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 AccessDbase(ReadOnly);

 acquire(&lock);
 AR--;
 if (AR == 0 && WW > 0)
 cond_signal(&okToWrite);
 release(&lock);
}

9.52Crooks CS162 © UCB Fall 2022

Questions
Can readers starve? Consider Reader() entry
code:

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

What if we erase the condition check in
Reader exit?
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer

9.53Crooks CS162 © UCB Fall 2022

Questions
Further, what if we turn the signal() into
broadcast()
 AR--; // No longer active
 cond_broadcast(&okToWrite); // Wake up sleepers

Finally, what if we use only one condition
variable (call it “okContinue”) instead of two
separate ones?
–Both readers and writers sleep on this
variable
–Must use broadcast() instead of signal()

9.54Crooks CS162 © UCB Fall 2022

Code for a Reader
Reader() {
 // First check self into system
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 cond_wait(&okToRead,&lock);// Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 release(&lock);

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 acquire(&lock);
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 cond_signal(&okToWrite);// Wake up one writer
 release(&lock);
}

9.55Crooks CS162 © UCB Fall 2022

Writer() {
 // First check self into system
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 cond_wait(&okToWrite,&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 release(&lock);

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 acquire(&lock);
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 cond_broadcast(&okToRead); // Wake all readers
 }
 release(&lock);
}

Code for a Writer

9.56Crooks CS162 © UCB Fall 2022

Mesa Monitor Conclusion
Monitors represent the synchronization logic of the

program
–Wait if necessary

–Signal when change something so any waiting
threads can proceed

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

9.57Crooks CS162 © UCB Fall 2022

C-Language Support for Synchronization
C language: Pretty straightforward synchronization

Just make sure you know all the code paths out
of a critical section

 int Rtn() {
 acquire(&lock);
 …
 if (exception) {
 release(&lock);
 return errReturnCode;
 }
 …
 release(&lock);
 return OK;
}

9.58Crooks CS162 © UCB Fall 2022

Harder with more locks

void Rtn() {
 lock1.acquire();
 …
 if (error) {
 lock1.release();
 return;
 }
 …
 lock2.acquire();
 …
 if (error) {
 lock2.release()
 lock1.release();
 return;
 }
 …
 lock2.release();
 lock1.release();
}

Concurrency and Synchronization in C

9.59Crooks CS162 © UCB Fall 2022

C++ Language Support for Synchronization
Languages with exceptions like C++
–Languages that support exceptions are
problematic (easy to make a non-local exit

without releasing lock)

 void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }
–Notice that an exception in DoFoo() will exit

without releasing the lock!

9.60Crooks CS162 © UCB Fall 2022

C++ Language Support for Synchronization (con’t)
Must catch all exceptions in critical sections
–Catch exceptions, release lock, and re-
throw exception:

 void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

9.61Crooks CS162 © UCB Fall 2022

Much better: C++ Lock Guards
#include <mutex>
int global_i = 0;
std::mutex global_mutex;

void safe_increment() {
 std::lock_guard<std::mutex> lock(global_mutex);
 …
 global_i++;
 // Mutex released when ‘lock’ goes out of scope
}

9.62Crooks CS162 © UCB Fall 2022

Python with Keyword
More versatile than we show here (can be used to
close files, database connections, etc.)

lock = threading.Lock()
…
with lock: # Automatically calls acquire()
 some_var += 1
 …
release() called however we leave block

9.63Crooks CS162 © UCB Fall 2022

Java synchronized Keyword
Every Java object has an associated lock:

–Lock is acquired on entry and released on exit from a synchronized method
–Lock is properly released if exception occurs inside a synchronized method

–Mutex execution of synchronized methods (beware deadlock)
 class Account {
 private int balance;

 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

9.64Crooks CS162 © UCB Fall 2022

Java Support for Monitors
Along with a lock, every object has a single

condition variable associated with it

To wait inside a synchronized method:
– void wait();
– void wait(long timeout);

To signal while in a synchronized method:
– void notify();
– void notifyAll();

9.65Crooks CS162 © UCB Fall 2022

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization
primitives using atomic operations

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

9.66Crooks CS162 © UCB Fall 2022

Topic Breakdown

Virtualizing the CPU

Process Abstraction and API
Threads and Concurrency

Scheduling

Virtualizing Memory Virtual Memory
Paging

Persistence
IO devices
File Systems

Distributed Systems
Challenges with distribution
Data Processing & Storage

9.67Crooks CS162 © UCB Fall 2022

Goals for Today

• What is scheduling?

• What makes a good scheduling policy?

• What are existing schedulers and how do they
perform?

9.68Crooks CS162 © UCB Fall 2022

The Scheduling Loop!

if (readyThreads(TCBs)) {
 nextTCB = selectThread(TCBs);
 run(nextTCB);
} else {
 run_idle_thread();
}

1. Which task to run
next?

2. How frequently
does this loop run?

3. What happens if
run never returns?

9.69Crooks CS162 © UCB Fall 2022

Recall: Thread Life Cycle

Running Ready

Blocked
Request I/O Finish I/O

Descheduled

Scheduled
Dying

9.70Crooks CS162 © UCB Fall 2022

Recall: What triggers a scheduling decision?

CPUReady Queue

I/O Queue

Wait Queue Wait for an interrupt

Time Slice Expired

IO Request

Fork a child / Yield

Interrupt Occurs

IO Occurs

9.71Crooks CS162 © UCB Fall 2022

What makes a good scheduling policy?

A hopeless Queue.

The Queue For the UK Queen

6 miles (10 KM) long.

Visible from Space.

A bad but more realistic queue.

The DMV

9.72Crooks CS162 © UCB Fall 2022

What makes a good scheduling policy?

What does the DMV
care about?

What do individual
users care about?

9.73Crooks CS162 © UCB Fall 2022

Important Performance Metrics
Response time (or latency).

User-perceived time to do some task

Throughput.
The rate at which tasks are completed

Scheduling overhead.
The time to switch from one task to another.

Predictability.
Variance in response times for repeated requests.

9.74Crooks CS162 © UCB Fall 2022

Important Performance Metrics

Fairness
Equality in the performance perceived by one task

Starvation
The lack of progress for one task, due to resources

being allocated to different tasks

9.75Crooks CS162 © UCB Fall 2022

Sample Scheduling Policies
Assume DMV job A takes 1 second, job B takes 2 days

Policy Idea: Only ever schedule users with Job A

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?
A) Yes B) No

Is the schedule fair?
A) Yes B) No

9.76Crooks CS162 © UCB Fall 2022

Sample Scheduling Policies
Assume DMV consists only of jobs of type A.

Policy Idea: Schedule jobs randomly

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?
A) Yes B) No

Is the schedule fair?
A) Yes B) No

9.77Crooks CS162 © UCB Fall 2022

Sample Scheduling Policies
Assume DMV consists only of 100 different types of jobs.
Some jobs need Clerk A, some Clerks A&B, others Clerk C.
Policy Idea Every time schedule a job, compute all possible

orderings of jobs, pick one that finishes quickest

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?
A) Yes B) No

Is the schedule fair?
A) Yes B) No

9.80Crooks CS162 © UCB Fall 2022

Scheduling Policy Goals/Criteria

Minimise
Response Time

Maximise
Throughput

While remaining fair and starvation-free

9.81Crooks CS162 © UCB Fall 2022

Useful metrics
Waiting time for P

Total Time spent waiting for CPU
Average waiting time

Average of all processes’ wait time

Response Time for P
Time to when process gets first scheduled

Completion time
Waiting time + Run time

Average completion time
Average of all processes' completion time

9.82Crooks CS162 © UCB Fall 2022

Assumptions

Unrealistic but simplify the problem
so it can be solved

Threads are independent! One thread = One User

Only look at work-conserving scheduler
=> Never leave processor idle if work to do

9.83Crooks CS162 © UCB Fall 2022

Workload Assumptions

A workload is a set of tasks for some
system to perform, including how long tasks

last and when they arrive

Compute-Bound

Tasks that primarily
perform compute

Fully utilise CPU

IO Bound

Mostly wait for IO,
limited compute

Often in the
Blocked state

9.84Crooks CS162 © UCB Fall 2022

First-Come, First-Served (FCFS)

Run tasks in order of arrival.

Run task until completion (or blocks on IO).
No preemption

This is the DMV model.

Also called FIFO

9.85Crooks CS162 © UCB Fall 2022

First-Come, First-Served (FCFS)
Process Burst Time
P1 3
P2 3
P3 24 0 3 6 30

P3P2P1

What is the average completion time?

What is the average waiting time?

(3+6+30
3 = 13)

(0+3+6
3 = 3)

9.86Crooks CS162 © UCB Fall 2022

First-Come, First-Served (FCFS)
Process Burst Time
P3 24
P2 3
P1 3 0 24 27 30

P3P2P1

What is the average completion time?

What is the average waiting time?

(24+27+30
3

= 27)

(0+24+27
3

= 17)

9.87Crooks CS162 © UCB Fall 2022

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

9.88Crooks CS162 © UCB Fall 2022

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P1 P2

9.89Crooks CS162 © UCB Fall 2022

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P1 P2

9.90Crooks CS162 © UCB Fall 2022

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P2

9.91Crooks CS162 © UCB Fall 2022

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P3

9.92Crooks CS162 © UCB Fall 2022

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P3 P4

9.93Crooks CS162 © UCB Fall 2022

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P3 P4 P5

9.94Crooks CS162 © UCB Fall 2022

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

CPU

The Convoy Effect

P3 P4 P5 P6

9.95Crooks CS162 © UCB Fall 2022

FIFO/FCFS very sensitive to arrival order

Convoy effect
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

CPU

The Convoy Effect

P3 P4 P5 P6Can FIFO lead to
starvation?

9.96Crooks CS162 © UCB Fall 2022

FCFS/FIFO Summary

The good

Simple
Low Overhead
No Starvation

The bad

 Sensitive to arrival
order (poor
predictability)

The ugly

 Convoy Effect.
 Bad for Interactive

Tasks

9.97Crooks CS162 © UCB Fall 2022

Shortest Job First

How can we minimise average completion time?

By scheduling jobs in order of
estimated completion time

This is the “10 items or less” line at Safeway

9.98Crooks CS162 © UCB Fall 2022

Shortest Job First
Process Burst Time
P1 3
P2 6
P3 24

P4 1
0 1 4 10

P1P4

What is the average completion time?

Can prove that SJF generates optimal
average completion time if all jobs arrive

at the same time

(1+4+10+34
4

= 12.25)

P2 P3
34

9.99Crooks CS162 © UCB Fall 2022

Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that
always favours a fixed property
for scheduling leads to starvation

CPU P2P1

9.100Crooks CS162 © UCB Fall 2022

Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that
always favours a fixed property
for scheduling leads to starvation

CPU P2P1 P3

9.101Crooks CS162 © UCB Fall 2022

Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that
always favours a fixed property
for scheduling leads to starvation

CPU P2 P4P3

9.102Crooks CS162 © UCB Fall 2022

Are we done?

Is SFJ subject to the convoy effect?

Yes

Any non-preemptible scheduling
policy suffers from convoy effect

CPU P2

9.103Crooks CS162 © UCB Fall 2022

Are we done?

Is SFJ subject to the convoy effect?

Yes

Any non-preemptible scheduling
policy suffers from convoy effect

CPU P2 P4 P5 P6

9.104Crooks CS162 © UCB Fall 2022

SJF Summary

The good

Optimal Average
Completion Time when

jobs arrive
simultaneously

The bad

 Sensitive to arrival
order (poor
predictability)

The ugly

 Can lead to starvation!

Requires knowing duration of job

9.105Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)

Introduce the notion of preemption

A running task can be de-scheduled before completion.

STCF

Schedule the task with the least amount of time left

9.106Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
STCF

Schedule the task with the least amount of time left

Process Burst Time (left)
P1 3
P2 6
P3 24

P4 16

Arrival Time

10
1
0

20

9.107Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 6
P3 24

P4 16

Arrival Time

10
1
0

18

P3

10

9.108Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 6
P3 23

P4 16

Arrival Time

10
1
0

18

P3

10

P2

7

9.109Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 0
P3 23

P4 16

Arrival Time

10
1
0

20

P3

10

P2

7

P3

10

9.110Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 0
P3 20

P4 16

Arrival Time

10
1
0

18

P3

10

P2

7

P3

10

P1

13

9.111Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 0
P2 0
P3 15

P4 16

Arrival Time

10
1
0

18

P3

10

P2

7

P3

10

P1

13

P3

18

9.112Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 0
P2 0
P3 0

P4 15

Arrival Time

10
1
0

18

P3

10

P2

7

P3

10

P1

13

P3

33

9.113Crooks CS162 © UCB Fall 2022

Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 0
P2 0
P3 0

P4 15

Arrival Time

10
1
0

18

P3

10

P2

7

P3

10

P1

13

P3

32

P4

9.114Crooks CS162 © UCB Fall 2022

Are we done?

Can STCF lead to starvation?

Yes

Any scheduling policy that
always favours a fixed property
for scheduling leads starvation

No change!

9.115Crooks CS162 © UCB Fall 2022

Are we done?

Is STCF subject to the convoy effect?

No!

STCF is a preemptible policy

9.116Crooks CS162 © UCB Fall 2022

STCF Summary

The good

Optimal Average
Completion Time Always

The bad

The ugly

 Can lead to starvation!

Requires knowing duration of job

9.117Crooks CS162 © UCB Fall 2022

Taking a step back

Property FCFS SJF STCF
Optimise
Average
Completion

Time
Prevent
Starvation
Prevent
Convoy
Effect

Psychic Skills
Not Needed

Can we design a non-psychic,
starvation-free scheduler with

good response time?

9.118Crooks CS162 © UCB Fall 2022

Round-Robin Scheduling

RR runs a job for a time slice
(a scheduling quantum)

Once time slice over,
Switch to next job in ready queue.

=> Called time-slicing

9.119Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 53
P2 8P3 68
P4 24

RR with Time Quantum = 20

9.120Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 53 => 33

P2 8P3 68
P4 24

P1
0 20

RR with Time Quantum = 20

9.121Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 33

P2 8 => 0P3 68
P4 24

P1
0 20

RR with Time Quantum = 20

P2
28

9.122Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 33
P2 0P3 68 => 48
P4 24

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48

9.123Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 33
P2 0P3 48

P4 24 => 4

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68

9.124Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 33 => 13

P2 0P3 48
P4 4

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68
P1

88

9.125Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 13
P2 0P3 48 => 28
P4 4

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68
P1

88
P3

108

9.126Crooks CS162 © UCB Fall 2022

Process Burst Time
P1 13
P2 0P3 28

P4 4 => 0

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68
P1

88
P3

108
P4

112

9.127Crooks CS162 © UCB Fall 2022

P1
0 20

P2
28
P3

48
P4

68
P1

88
P3

108
P4 P1 P3 P3

112 125 145 153

RR with Time Quantum = 20

Waiting time

Average waiting time

Average completion time

(72+20+85+88
4

= 66.25)

• P1= 0 + (68-20)+(112-88)=72
• P2=(20-0)=20
• P3=(28-0)+(88-48)+(125-108)+0=85
• P4=(48-0)+(108-68)=88

(125+28+153+112
4

= 104.25)

9.129Crooks CS162 © UCB Fall 2022

Decrease Completion Time
• T1: Burst Length 10 T3: Burst Length 10
• T2: Burst Length 5

Q = 10

Average Completion Time = (10 + 15 + 25)/3 = 16.7

Q = 5

Average Completion Time = (20 + 10 + 25)/3 = 18.3

T1
0 10

T2
15

T1
0 15

T2 T1
5 20

T3
25

10

T3 T3
25

9.130Crooks CS162 © UCB Fall 2022

Small scheduling quantas lead to
frequent context switches
- Mode switch overhead
- Trash cache-state

q must be large with respect to context switch,
otherwise overhead is too high

Switching is not free!

9.131Crooks CS162 © UCB Fall 2022

Are we done?

Can RR lead to starvation?

No

No process waits more than (n-1)q time units

9.132Crooks CS162 © UCB Fall 2022

Are we done?

Can RR suffer from convoy effect?

No

Only run a time-slice at a time

9.133Crooks CS162 © UCB Fall 2022

RR Summary

The good

Bounded response time

The bad

Completion time can
be high (stretches out

long jobs)

The ugly

 Overhead of context switching

9.134Crooks CS162 © UCB Fall 2022

Taking a step back

Property FCFS SJF STCF
Optimise
Average
Completion

Time
Prevent
Starvation
Prevent
Convoy
Effect

Psychic Skills
Not Needed

9.135Crooks CS162 © UCB Fall 2022

Taking a step back

Property FCFS SJF STCF RR
Optimise
Average
Completion
Time

Optimise
Average
Response
Time
Prevent
Starvation
Prevent
Convoy
Effect
Psychic
Skills Not
Needed

9.136Crooks CS162 © UCB Fall 2022

FCFS and Round Robin Showdown

Assuming zero-cost context-switching time,
is RR always better than FCFS?
10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999

10 1000 1000

Job # FIFO
1 100
2 200
… …
9 900

10 1000

9.137Crooks CS162 © UCB Fall 2022

Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153
Best FCFS:

Quantum P1 P2 P3 P4 Average
Best FCFS 85 8 16 32 69.5
Q=1 137 30 153 81 100.5
Q=5 135 28 153 82 99.5
Q=8 133 16 153 80 99,5
Q=10 135 18 153 92 104.5
Q=20 125 28 153 112 104.5
Worst
FCFS

121 153 68 145 121.75

	CS162�Operating Systems and�Systems Programming�Lecture 9��Monitors (Continued)�Scheduling�Core Concepts and Classic Policies�
	Recall: Monitors are better!
	Recall: Wait & Signal Pattern
	Hoare Semantics
	Mesa Semantics
	Basic Structure of Mesa Monitor Program
	Readers/Writers Problem
	Basic Readers/Writers Solution
	Basic Readers/Writers Solution
	Code for a Reader
	Code for a Writer
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Simulation of Readers/Writers Solution
	Questions
	Questions
	Code for a Reader
	Code for a Writer
	Mesa Monitor Conclusion
	C-Language Support for Synchronization
	Concurrency and Synchronization in C
	C++ Language Support for Synchronization
	C++ Language Support for Synchronization (con’t)
	Much better: C++ Lock Guards
	Python with Keyword
	Java synchronized Keyword
	Java Support for Monitors
	Where are we going with synchronization?
	Topic Breakdown
	Goals for Today
	The Scheduling Loop!
	Recall: Thread Life Cycle
	Recall: What triggers a scheduling decision?
	What makes a good scheduling policy?
	Slide Number 72
	Important Performance Metrics
	Important Performance Metrics
	Sample Scheduling Policies
	Sample Scheduling Policies
	Sample Scheduling Policies
	Scheduling Policy Goals/Criteria
	Useful metrics
	Assumptions
	Workload Assumptions
	First-Come, First-Served (FCFS)
	First-Come, First-Served (FCFS)
	First-Come, First-Served (FCFS)
	The Convoy Effect
	The Convoy Effect
	The Convoy Effect
	The Convoy Effect
	The Convoy Effect
	The Convoy Effect
	The Convoy Effect
	The Convoy Effect
	The Convoy Effect
	FCFS/FIFO Summary
	Shortest Job First
	Shortest Job First
	Are we done?
	Are we done?
	Are we done?
	Are we done?
	Are we done?
	SJF Summary
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Shortest Time to Completion First (STCF)
	Are we done?
	Are we done?
	STCF Summary
	Taking a step back
	Round-Robin Scheduling
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	RR with Time Quantum = 20
	Decrease Completion Time
	Switching is not free!
	Are we done?
	Are we done?
	RR Summary
	Taking a step back
	Taking a step back
	FCFS and Round Robin Showdown
	Earlier Example with Different Time Quantum

