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Recall: Monitors are better!

Use locks for mutual exclusion and condition variables 
for scheduling constraints

Monitor: a lock and zero or more condition variables 
for managing concurrent access to shared data

A monitor is a paradigm for concurrent programming
- Some languages like Java provide this natively

- Most others use actual locks and condition variables
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Recall: Wait & Signal Pattern

acquire(&buf_lock);
…
while (isEmpty(&queue)) {
  cond_wait(&buf_CV,&buf_lock); 
}
…
lock.Release();

…
acquire(&buf_lock)
… 
cond_signal(&buf_CV);
…
release(&buf_lock));
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Hoare Semantics

acquire(&buf_lock);
…
if (isEmpty(&queue)) {
  cond_wait(&buf_CV,&buf_lock); 
}
…
lock.Release();

…
acquire(&buf_lock)
… 
cond_signal(&buf_CV);
…
release(&buf_lock));

Thread A Thread B

1. When call signal, handover buf_lock to thread B. 

2. Thread B gets immediately scheduled (nothing can run in 
between).

3.  Thread B eventually releases lock. 
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Mesa Semantics

acquire(&buf_lock);
…
while (isEmpty(&queue)) {
  cond_wait(&buf_CV,&buf_lock); 
}
…
lock.Release();

…
acquire(&buf_lock)
… 
cond_signal(&buf_CV);
…
release(&buf_lock));

Thread A Thread B

1. When call signal, keep lock. Place Thread B on READY 
queue (no special priority)

2. Thread A eventually releases buf_lock. 
3. Thread B eventually gets scheduled and acquires buf_lock. 
Thread C may have run in between. 

4. Thread B eventually releases buf_lock.
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Basic Structure of Mesa Monitor Program 
Monitors represent the synchronization logic of 

the program
–Wait if necessary

–Signal when change something so any waiting 
threads can proceed

 lock 
while (need to wait) {
   condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables
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Readers/Writers Problem

Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time

» Only one writer at a time

R
R

R

W
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Basic Readers/Writers Solution
Correctness Constraints:

–Readers can access database when no writers
–Writers can access database when no readers or writers
–Only one thread manipulates state variables at a time

Basic structure of a solution:
–Reader()
   Wait until no writers
   Access data base
   Check out – wake up a waiting writer

–Writer()
   Wait until no active readers or writers
   Access database
   Check out – wake up waiting readers or writer
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Basic Readers/Writers Solution

State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
»int WR: Number of waiting readers; initially = 0
»int AW: Number of active writers; initially = 0
»int WW: Number of waiting writers; initially = 0

»Condition okToRead = NIL
»Condition okToWrite = NIL
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Code for a Reader
Reader() {
 // First check self into system
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read?
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

  // Perform actual read-only access
 AccessDatabase(ReadOnly);

  // Now, check out of system
 acquire(&lock);
 AR--;  // No longer active
 if (AR == 0 && WW > 0) // No other active readers
  cond_signal(&okToWrite);// Wake up one writer
 release(&lock);
}
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Writer() {
 // First check self into system
 acquire(&lock);

  while ((AW + AR) > 0) { // Is it safe to write?
  WW++; // No. Active users exist
  cond_wait(&okToWrite,&lock); // Sleep on cond var
  WW--; // No longer waiting
 }

  AW++;  // Now we are active!
 release(&lock);

  // Perform actual read/write access
 AccessDatabase(ReadWrite);

  // Now, check out of system
 acquire(&lock);
 AW--;  // No longer active
 if (WW > 0){ // Give priority to writers
  cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
  cond_broadcast(&okToRead); // Wake all readers
 } 
 release(&lock);
}

Code for a Writer
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Simulation of Readers/Writers Solution
Use an example to simulate the solution

Consider the following sequence of 
operators:

–R1, R2, W1, R3

Initially: AR = 0, WR = 0, AW = 0, 
WW = 0
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Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock)

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 comes along (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 accessing dbase (no other threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)
AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R2 comes along (R1 accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 and R2 accessing dbase

AR = 2, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}

Assume readers take a while to access database
Situation: Locks released, only AR is non-zero
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Simulation of Readers/Writers Solution
W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 comes along (R1 and R2 are still accessing dbase)

AR = 2, WR = 0, AW = 0, WW = 0
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1
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Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 0, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R3 comes along (R1 and R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 lock.release();

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 comes along (R1, R2 accessing dbase, W1 waiting)

AR = 2, WR = 1, AW = 0, WW = 1
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Simulation of Readers/Writers Solution
R1 and R2 accessing dbase, W1 and R3 waiting

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
Status: 
• R1 and R2 still reading
• W1 and R3 waiting on okToWrite and okToRead, respectively
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Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 2, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R2 finishes (R1 accessing dbase, W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 finishes (W1 and R3 waiting)

AR = 1, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R1 finishes (W1, R3 waiting)

AR = 0, WR = 1, AW = 0, WW = 1
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}

Simulation of Readers/Writers Solution
R1 signals a writer (W1 and R3 waiting)
AR = 0, WR = 1, AW = 0, WW = 1
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 1
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 gets signal (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 accessing dbase (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 1, WW = 0
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 finishes (R3 still waiting)

AR = 0, WR = 1, AW = 0, WW = 0
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Writer() {
 acquire(&lock);

  while ((AW + AR) > 0) {  // Is it safe to write?
  WW++;  // No. Active users exist
  cond_wait(&okToWrite,&lock);// Sleep on cond var
  WW--;  // No longer waiting
 }

  AW++;  
 release(&lock);

 AccessDBase(ReadWrite);

   acquire(&lock);
 AW--;  
 if (WW > 0){ 
  cond_signal(&okToWrite); 
 } else if (WR > 0) { 
  cond_broadcast(&okToRead); 
 } 
 release(&lock);
}

Simulation of Readers/Writers Solution
W1 signaling readers (R3 still waiting)
AR = 0, WR = 1, AW = 0, WW = 0



9.47Crooks CS162 © UCB Fall 2022

Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 gets signal (no waiting threads)

AR = 0, WR = 1, AW = 0, WW = 0
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Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}

Simulation of Readers/Writers Solution
R3 gets signal (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
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Simulation of Readers/Writers Solution
R3 accessing dbase (no waiting threads)
AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R3 finishes (no waiting threads)

AR = 1, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDBase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Simulation of Readers/Writers Solution
R3 finishes (no waiting threads)

AR = 0, WR = 0, AW = 0, WW = 0
Reader() {
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

 AccessDbase(ReadOnly);

 acquire(&lock);
 AR--;  
 if (AR == 0 && WW > 0) 
  cond_signal(&okToWrite); 
 release(&lock);
}
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Questions
Can readers starve?  Consider Reader() entry 
code:

 while ((AW + WW) > 0) { // Is it safe to read?
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++; // Now we are active!

What if we erase the condition check in 
Reader exit?
  AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
  cond_signal(&okToWrite);// Wake up one writer 
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Questions
Further, what if we turn the signal() into 
broadcast()
  AR--; // No longer active
 cond_broadcast(&okToWrite); // Wake up sleepers 

Finally, what if we use only one condition 
variable (call it “okContinue”) instead of two 
separate ones?
–Both readers and writers sleep on this 
variable
–Must use broadcast() instead of signal()
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Code for a Reader
Reader() {
 // First check self into system
 acquire(&lock);

  while ((AW + WW) > 0) { // Is it safe to read?
  WR++; // No. Writers exist
  cond_wait(&okToRead,&lock);// Sleep on cond var
  WR--; // No longer waiting
 }

  AR++;  // Now we are active!
 release(&lock);

  // Perform actual read-only access
 AccessDatabase(ReadOnly);

  // Now, check out of system
 acquire(&lock);
 AR--;  // No longer active
 if (AR == 0 && WW > 0) // No other active readers
  cond_signal(&okToWrite);// Wake up one writer
 release(&lock);
}
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Writer() {
 // First check self into system
 acquire(&lock);

  while ((AW + AR) > 0) { // Is it safe to write?
  WW++; // No. Active users exist
  cond_wait(&okToWrite,&lock); // Sleep on cond var
  WW--; // No longer waiting
 }

  AW++;  // Now we are active!
 release(&lock);

  // Perform actual read/write access
 AccessDatabase(ReadWrite);

  // Now, check out of system
 acquire(&lock);
 AW--;  // No longer active
 if (WW > 0){ // Give priority to writers
  cond_signal(&okToWrite);// Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
  cond_broadcast(&okToRead); // Wake all readers
 } 
 release(&lock);
}

Code for a Writer



9.56Crooks CS162 © UCB Fall 2022

Mesa Monitor Conclusion
Monitors represent the synchronization logic of the 

program
–Wait if necessary

–Signal when change something so any waiting 
threads can proceed

 lock 
while (need to wait) {
   condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables
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C-Language Support for Synchronization
C language: Pretty straightforward synchronization

Just make sure you know all the code paths out 
of a critical section

 int Rtn() {
  acquire(&lock);
  …
  if (exception) {
   release(&lock);
   return errReturnCode;
  }
  …
  release(&lock);
  return OK;
}
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Harder with more locks

void Rtn() {
  lock1.acquire();
  …
  if (error) {
    lock1.release();
    return;
  }
  …
  lock2.acquire();
  …
  if (error) {
    lock2.release()
    lock1.release();
    return;
  }
  …  
  lock2.release();
  lock1.release();
}

Concurrency and Synchronization in C
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C++ Language Support for Synchronization
Languages with exceptions like C++
–Languages that support exceptions are 
problematic (easy to make a non-local exit 

without releasing lock)

  void Rtn() {
  lock.acquire();
  …
  DoFoo();
  …
  lock.release();
 }
 void DoFoo() {
  …
  if (exception) throw errException;
  …
 }
–Notice that an exception in DoFoo() will exit 

without releasing the lock!
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C++ Language Support for Synchronization (con’t)
Must catch all exceptions in critical sections
–Catch exceptions, release lock, and re-
throw exception:

 void Rtn() {
  lock.acquire();
  try {
   …
   DoFoo();
   …
  } catch (…) { // catch exception
   lock.release(); // release lock
   throw; // re-throw the exception
  }
  lock.release();
 }
 void DoFoo() {
  …
  if (exception) throw errException;
  …
 }
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Much better: C++ Lock Guards
#include <mutex>
int global_i = 0;
std::mutex global_mutex;

void safe_increment() {
  std::lock_guard<std::mutex> lock(global_mutex);
  …
  global_i++;
  // Mutex released when ‘lock’ goes out of scope
}
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Python with Keyword
More versatile than we show here (can be used to 
close files, database connections, etc.)

lock = threading.Lock()
…
with lock: # Automatically calls acquire()
  some_var += 1
  …
# release() called however we leave block
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Java synchronized Keyword
Every Java object has an associated lock:

–Lock is acquired on entry and released on exit from a synchronized method
–Lock is properly released if exception occurs inside a synchronized method

–Mutex execution of synchronized methods (beware deadlock)
 class Account {
  private int balance;

  // object constructor
  public Account (int initialBalance) {
   balance = initialBalance;
  }
  public synchronized int getBalance() {
   return balance;
  }
  public synchronized void deposit(int amount) {
   balance += amount;
  }
 }
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Java Support for Monitors
Along with a lock, every object has a single 

condition variable associated with it

To wait inside a synchronized method:
– void wait();
– void wait(long timeout);

To signal while in a synchronized method:
– void notify();
– void notifyAll();
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Hardware

Higher-
level 
API

Programs

Where are we going with synchronization?

Implement various higher-level synchronization 
primitives using atomic operations

Load/Store    Disable Ints   Test&Set   
Compare&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs
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Topic Breakdown

Virtualizing the CPU 

Process Abstraction and API
Threads and Concurrency

Scheduling

Virtualizing Memory Virtual Memory
Paging

Persistence
IO devices
File Systems

Distributed Systems
Challenges with distribution
Data Processing & Storage
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Goals for Today

• What is scheduling? 

• What makes a good scheduling policy?

• What are existing schedulers and how do they 
perform?
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The Scheduling Loop!

if (readyThreads(TCBs) ) {
 nextTCB = selectThread(TCBs);
 run(nextTCB);
} else {
 run_idle_thread();
}

1. Which task to run 
next?

2. How frequently 
does this loop run?

3. What happens if 
run never returns?
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Recall: Thread Life Cycle 

Running Ready

Blocked
Request I/O Finish I/O

Descheduled

Scheduled
Dying
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Recall:  What triggers a scheduling decision?

CPUReady Queue

I/O Queue

Wait Queue Wait for an interrupt

Time Slice Expired

IO Request

Fork a child / Yield

Interrupt Occurs

IO Occurs
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What makes a good scheduling policy?

A hopeless Queue.

The Queue For the UK Queen

6 miles (10 KM) long.

Visible from Space.

A bad but more realistic queue.

The DMV
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What makes a good scheduling policy?

What does the DMV 
care about?

What do individual 
users care about?
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Important Performance Metrics
Response time (or latency). 

User-perceived time to do some task

Throughput. 
The rate at which tasks are completed

Scheduling overhead. 
The time to switch from one task to another.

Predictability. 
Variance in response times for repeated requests.
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Important Performance Metrics

Fairness 
Equality in the performance perceived by one task

Starvation
The lack of progress for one task, due to resources 

being allocated to different tasks
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Sample Scheduling Policies
Assume DMV job A takes 1 second, job B takes 2 days

Policy Idea: Only ever schedule users with Job A

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead 

Can the schedule lead to starvation?
A) Yes B) No

Is the schedule fair?
A) Yes B) No
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Sample Scheduling Policies
Assume DMV consists only of jobs of type A. 

Policy Idea: Schedule jobs randomly

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?
A) Yes B) No

Is the schedule fair?
A) Yes B) No
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Sample Scheduling Policies
Assume DMV consists only of 100 different types of jobs. 
Some jobs need Clerk A, some Clerks A&B, others Clerk C. 
Policy Idea Every time schedule a job, compute all possible 

orderings of jobs, pick one that finishes quickest

What is the metric we are optimizing?
A) Throughput B) Latency C) Predictability D) Low-Overhead

Can the schedule lead to starvation?
A) Yes B) No

Is the schedule fair?
A) Yes B) No
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Scheduling Policy Goals/Criteria

Minimise 
Response Time

Maximise 
Throughput

While remaining fair and starvation-free
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Useful metrics
Waiting time for P 

Total Time spent waiting for CPU
Average waiting time

Average of all processes’ wait time 

Response Time for P
Time to when process gets first scheduled

Completion time
Waiting time + Run time 

Average completion time
Average of all processes' completion time
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Assumptions

Unrealistic but simplify the problem 
so it can be solved

Threads are independent! One thread = One User

Only look at work-conserving scheduler
=> Never leave processor idle if work to do
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Workload Assumptions

A workload is a set of tasks for some 
system to perform, including how long tasks 

last and when they arrive

Compute-Bound

Tasks that primarily 
perform compute

Fully utilise CPU

IO Bound

Mostly wait for IO, 
limited compute

Often in the 
Blocked state
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First-Come, First-Served (FCFS)

Run tasks in order of arrival. 

Run task until completion (or blocks on IO).
No preemption

This is the DMV model. 

Also called FIFO
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First-Come, First-Served (FCFS)
Process Burst Time
P1 3
P2 3
P3  24 0 3 6 30

P3P2P1

What is the average completion time? 

What is the average waiting time? 

( 3+6+30
3 = 13 )

( 0+3+6
3 = 3 )
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First-Come, First-Served (FCFS)
Process Burst Time
P3 24
P2 3
P1  3 0 24 27 30

P3P2P1

What is the average completion time? 

What is the average waiting time? 

( 24+27+30
3

= 27 )

( 0+24+27
3

= 17 )
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The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible
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CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P1 P2
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CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P1 P2
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CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P2



9.91Crooks CS162 © UCB Fall 2022

CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P3
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CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P3 P4
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CPU

The Convoy Effect

FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

P3 P4 P5
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FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

CPU

The Convoy Effect

P3 P4 P5 P6
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FIFO/FCFS very sensitive to arrival order

Convoy effect 
Short process stuck behind long process

Lots of small tasks build up behind long tasks
FIFO is non-preemptible

CPU

The Convoy Effect

P3 P4 P5 P6Can FIFO lead to 
starvation?
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FCFS/FIFO Summary

The good

Simple
Low Overhead
No Starvation

The bad

 Sensitive to arrival 
order (poor 
predictability)

The ugly

 Convoy Effect. 
 Bad for Interactive 

Tasks
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Shortest Job First

How can we minimise average completion time?

By scheduling jobs in order of 
estimated completion time

This is the “10 items or less” line at Safeway
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Shortest Job First
Process Burst Time
P1 3
P2 6
P3  24

P4  1
0 1 4 10

P1P4

What is the average completion time? 

Can prove that SJF generates optimal 
average completion time if all jobs arrive 

at the same time 

( 1+4+10+34
4

= 12.25 )

P2 P3
34
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Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that 
always favours a fixed property 
for scheduling leads to starvation

CPU P2P1
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Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that 
always favours a fixed property 
for scheduling leads to starvation

CPU P2P1 P3
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Are we done?

Can SJF lead to starvation?

Yes

Any scheduling policy that 
always favours a fixed property 
for scheduling leads to starvation

CPU P2 P4P3
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Are we done?

Is SFJ subject to the convoy effect?

Yes

Any non-preemptible scheduling 
policy suffers from convoy effect

CPU P2
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Are we done?

Is SFJ subject to the convoy effect?

Yes

Any non-preemptible scheduling 
policy suffers from convoy effect

CPU P2 P4 P5 P6
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SJF Summary

The good

Optimal Average 
Completion Time when 

jobs arrive 
simultaneously

The bad

 Sensitive to arrival 
order (poor 
predictability)

The ugly

 Can lead to starvation!

Requires knowing duration of job 
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Shortest Time to Completion First (STCF)

Introduce the notion of preemption

A running task can be de-scheduled before completion. 

STCF

Schedule the task with the least amount of time left
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Shortest Time to Completion First (STCF)
STCF

Schedule the task with the least amount of time left

Process Burst Time (left)
P1 3
P2 6
P3  24

P4  16

Arrival Time

10 
1 
0
 
20 
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Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 6
P3  24

P4  16

Arrival Time

10 
1 
0
 
18 

P3

10
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Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 6
P3  23

P4  16

Arrival Time

10 
1 
0
 
18 

P3

10

P2

7
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Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 0
P3  23

P4  16

Arrival Time

10 
1 
0
 
20 

P3

10

P2

7

P3

10
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Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 3
P2 0
P3  20

P4  16

Arrival Time

10 
1 
0
 
18 

P3

10

P2

7

P3

10

P1

13
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Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 0
P2 0
P3  15

P4  16

Arrival Time

10 
1 
0
 
18 

P3

10

P2

7

P3

10

P1

13

P3

18
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Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 0
P2 0
P3 0

P4  15

Arrival Time

10 
1 
0
 
18 

P3

10

P2

7

P3

10

P1

13

P3

33
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Shortest Time to Completion First (STCF)
Process Burst Time (left)
P1 0
P2 0
P3 0

P4  15

Arrival Time

10 
1 
0
 
18 

P3

10

P2

7

P3

10

P1

13

P3

32

P4
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Are we done?

Can STCF lead to starvation?

Yes

Any scheduling policy that 
always favours a fixed property 
for scheduling leads starvation

No change!
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Are we done?

Is STCF subject to the convoy effect?

No!

STCF is a preemptible policy
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STCF Summary

The good

Optimal Average 
Completion Time Always

The bad

 

The ugly

 Can lead to starvation!

Requires knowing duration of job 
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Taking a step back

Property FCFS SJF STCF
Optimise 
Average 
Completion 

Time
Prevent 
Starvation
Prevent
Convoy 
Effect

Psychic Skills 
Not Needed

Can we design a non-psychic, 
starvation-free scheduler with 

good response time?
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Round-Robin Scheduling

RR runs a job for a time slice 
(a scheduling quantum)

Once time slice over, 
Switch to next job in ready queue.

=> Called time-slicing
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Process  Burst Time
P1   53
P2   8P3  68
P4  24

RR with Time Quantum = 20
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Process  Burst Time
P1   53 => 33

P2   8P3  68
P4  24

P1
0 20

RR with Time Quantum = 20
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Process  Burst Time
P1   33

P2   8 => 0P3  68
P4  24

P1
0 20

RR with Time Quantum = 20

P2
28
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Process  Burst Time
P1   33
P2   0P3  68 => 48
P4  24

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
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Process  Burst Time
P1   33
P2   0P3  48

P4  24 => 4

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68
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Process  Burst Time
P1   33 => 13

P2   0P3  48
P4  4

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68
P1

88
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Process  Burst Time
P1   13
P2   0P3  48 => 28
P4  4

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68
P1

88
P3

108
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Process  Burst Time
P1   13
P2   0P3  28

P4  4 => 0

P1
0 20

RR with Time Quantum = 20

P2
28
P3

48
P4

68
P1

88
P3

108
P4

112
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P1
0 20

P2
28
P3

48
P4

68
P1

88
P3

108
P4 P1 P3 P3

112 125 145 153

RR with Time Quantum = 20

Waiting time 
 

Average waiting time

Average completion time

( 72+20+85+88
4

= 66.25)

• P1= 0 + (68-20)+(112-88)=72
• P2=(20-0)=20
• P3=(28-0)+(88-48)+(125-108)+0=85
• P4=(48-0)+(108-68)=88

(125+28+153+112
4

= 104.25)
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Decrease Completion Time
• T1: Burst Length 10    T3: Burst Length 10
• T2: Burst Length 5

Q = 10

Average Completion Time = (10 + 15 + 25)/3 = 16.7

Q = 5

Average Completion Time = (20 + 10 + 25)/3 = 18.3

T1
0 10

T2
15

T1
0 15

T2 T1
5 20

T3
25

10

T3 T3
25
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Small scheduling quantas lead to 
frequent context switches
- Mode switch overhead
- Trash cache-state

q must be large with respect to context switch, 
otherwise overhead is too high

Switching is not free!
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Are we done?

Can RR lead to starvation?

No

No process waits more than (n-1)q time units
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Are we done?

Can RR suffer from convoy effect?

No

Only run a time-slice at a time
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RR Summary

The good

Bounded response time

The bad

Completion time can 
be high (stretches out 

long jobs)

The ugly

 Overhead of context switching
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Taking a step back

Property FCFS SJF STCF
Optimise 
Average 
Completion 

Time
Prevent 
Starvation
Prevent
Convoy 
Effect

Psychic Skills 
Not Needed
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Taking a step back

Property FCFS SJF STCF RR
Optimise 
Average 
Completion 
Time

Optimise 
Average 
Response 
Time 
Prevent 
Starvation
Prevent
Convoy 
Effect
Psychic 
Skills Not 
Needed
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FCFS and Round Robin Showdown

Assuming zero-cost context-switching time, 
is RR always better than FCFS?
10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999

10 1000 1000

Job # FIFO
1 100
2 200
… …
9 900

10 1000
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Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153
Best FCFS:

Quantum P1 P2 P3 P4 Average
Best FCFS 85 8 16 32 69.5
Q=1 137 30 153 81 100.5
Q=5 135 28 153 82 99.5
Q=8 133 16 153 80 99,5
Q=10 135 18 153 92 104.5
Q=20 125 28 153 112 104.5
Worst 
FCFS

121 153 68 145 121.75
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