CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph
Spring 2001

L ectured: Threads and Dispatching

4.0 Main Point:

God: Abstraction that each thread hasillusion of its own CPU.
Hardware: shared CPU, interrupts.

How does this work?

4.1 Threads

Imagine we had the following C program to compute and list the digits of A into
afile and to print out the cs162 class ligt to another file:

mai n() {

Comput ePi (“/tnp/pi.text”);

Printd assList(“/tnp/clist.text”);
}

This program would unfortunately never print out the class list snce ComputePi()
will never finish.
With threads we could have the two activities go on in paradld:

mai n() {
Creat eThread(ConputePi, “/tnp/pi.text”);
CreateThread(PrintClassList”, “/tmp/clist.text”);

}

If we stopped this program and examined it with a debugger we would see two stacks that
could be listed and two sets of CPU registers to examine.

Note: we can't smply let each stack “grow” backwards towards the hegp anymore! Haveto
worry about stacks overrunning each other.

CS 162 Spring 2001 Lecture 4 1/10

code

alobal date
heap i

stack 1 T
stack 2 T

Two key concepts.
1. thread control block (per-thread state)
2. dispatching loop

411 Per-thread state

Thread Control Block (TCB)
(sometimes caled a* Process Control Block” or PCB)

Thisiswhere dl information relevant to the thread iskept. Thereis one per active
thread. The contentsinclude:
execution state: CPU registers, program counter, pointer to stack
scheduling information: state (see below) , priority, CPU time used
acoounting info
various pointers (for implementing scheduling queues)
etc. (add stuff as you find a need)
In Nachos. “Thread” is aclassthat includesthe TCB

OS keegps an array (or linked ligt or ...) of TCBsin its own protected memory. We
describe one approach to this below.

CS 162 Spring 2001 Lecture 4 2/10

4.2 The Lifecycle of a Thread

Threads dl go through the lifecycle shown below:
1) Theare crested and admitted to the system
2) They remain in the system, sharing resources with al other threads in the system.
Of course, only one thread can be actudly “running” on the CPU & any time
(assuming asngle-CPU system).
3) They leave the system.

Wewill first describe how threads are managed when they are in the system. We will then

discuss how thread creation and termination are handle

admitted interrupt

scheduler dispatch

Silberschatz and Galvin ©1999

IO or event completion G or event wait

An*“active’ thread (i.e,, onethat isin the ready, waiting, or running stete) is
represented in the sysem by its TCB. The TCBs are organized into queues based on
their state. For threads waiting for an event (1/O, other thread completion, etc.) they
can be queues for each such event. An example of such an arrangement is shown
below:

CS 162 Spring 2001 Lecture 4 3/10

gueus header PCE; FCB.

ready head [= —=
LI tail u regishers FEOIGIErS
meag head +—a
tapa =
uni & b T
:’;Zg head +—
irgo tall d—a F-"El:f:l;J . FCB,, I-"CI‘El-‘j
/ - - =
disk head 4
unit tail
PGB,
tarminal head ot T
unit & Ll .--'""

Silberschaz and Gavin O 1999

4.3 Dispatching Loop (scheduler.cc)

The main loop of the scheduler is responsible for choosing a thread to run and ensuring
that thread switching is done correctly. Conceptually, it lookslike this:

Loop {
Run t hr ead

Choose new thread to run
Save state of old thread fromCPU into its TCB

Load state of newthread fromits TCB i nto CPU

4.3.1 Running athread:

CS 162 Spring 2001 Lecture 4 4/10

How do | run athread? Load its state (registers, PC, stack pointer) into the CPU, and
do ajump to the PC value.

How does dispatcher get control back? Two ways.
Interna everts: thread hands control back voluntarily
Externd events: thread gets preempted

Internal events:

Thread blocks on 1/0 (e.g., disk I/O, or waiting on keyboard input)
Thread blocks waiting on a“sgnd” from another thread
Yield (give CPU to someone ese who' s ready to run)

Yidd thread switch example:
Comput ePi () {
while (TRUE) {
Conmput eNextDigit () ;
yield();

}

Stack for yielding thread:

CS 162 Spring 2001 Lecture 4 5/10

switch

run new thread

kernel_yield
Trap to OS

vield

ComputePi

run_new thread() {
newThread = Pi ckNewThread();
swi tch(cur Thread, newThread);
Thr eadHouseKeepi ng(); /*covered next |ecture */

4.3.2 Saving/restoring state (often called " context switch"):

What do you need to save/restore when the dispatcher switchesto a new thread?

Anything next thread may trash: PC, registers, change execution stack

Want to treat each thread in isolation.

To take an example from the Nachos code:
What if two threads loop, each cdling Yield?
Yidd cdls Switch to switch to the next thread.
But once you start running the next thread, you are on a different execution stack.
Thus, Switch is cdled in one thread's context, but returns in the other's!

CS 162 Spring 2001 Lecture 4 6/10

Thread T switchingto Thread S

switch routine (shown herein C syntax, but would be implemented in assembler):
int tNew) ({
/* Save registers of running thread to TCB */

switch(int tCur,

TCB[tCur].regs.r7

TCB[tCur].regs.r0
TCB[t Cur].regs.sp

CPU. r 7,

CPU. r 0;
CPU. sp;

TCB[tCur].regs.retpc = CPU.retpc;

/* return addr

/* Load state of new thread into CPU */

CPU.r7

CPU.TO
CPU. sp

TCB[t New] .regs. r7,;

TCB[t New] . regs. rO0;
TCB[Nnewj . r egs. sp;

/* Henceforth running on new thread s stack */
CPU.retpc = TCB[t New . regs.retpc;

return,

/* Return fromswitch returns to CPU. retpc */

Note, the“retpc” is when the return from switch should jump to. In practice this
isredly implemented asa“jump” to that location.
Thereisared implementation of Switch in Nachosin switch.s; of coursg, it's magical!
(but you should be adleto follow it)

What if you make amigake in implementing switch?
For instance, suppose you forget to save and restore register 4?
Get intermittent failures depending on exactly when context switch occurred,
and whether new thread was using register 4. Potentidly, system will give wrong
result, without any warning (if program didn't notice that register 4 got trashed).

CS 162 Spring 2001 Lecture 4

7/10

*/

4.3.3

Can you devise an exhaudtive test to guarantee that switch works? No!

Note: We assumethat all threads go through run_new_thread() in order to be
removed from and reingtated upon the CPU.

Blocked on /O thread switch example:

run new thread

kernel _read
Trap to OS

read

CopvFile

Blocked on thread Sgnd exampleissmilar - join.

What if thread never did any 1/O, never waited, and didn't yield control? Dispatcher
has to gain control back somehow.

External events:

I nterrupts — type character, disk 1/0 request finishes wakes up dispatcher, so it
can choose another thread to run
Timer — like an darm clock that goes off every n milliseconds

Interrupts are a special kind of hardware-invoked context switch. No separate step to
choose what to run next; always run the interrupt handler immediatdy.

Timer interrupt routine:
Timerinterrupt() {

CS 162 Spring 2001 Lecture 4 8/10

DoPer i odi cHouseKeepi ng() ;
run_new_t hread();

Stack of preempted thread:

run new thread

TimerInterrupt

HW timer interrupt

SomeRoutine

I/O interrupt: same as timer interrupt except that DoHouseK eeping() is replaced by
Servicel O().

4.3.4 Choosingathread torun

Digpatcher keeps alist of ready (runnable) threads — how does it choose among them?

Zero ready threads — dispatcher just loops.
Alternaiveisfor OSto create an “idle thread” that Smply loops or does
nothing. Then there' s dways at least one runnable thread.
Exactly one ready thread — easy.
More than one ready thread:
1. LIFO (lagtin, firg out): put ready threads on front of the list, and
dispatcher takes threads from front. Resultsin sarvation.

CS 162 Spring 2001 Lecture 4 9/10

2. Pick one at random: Starvation can occur.

3. HFO (firgtin, firgt out): put ready threads on back of ligt, pull them off
from the front (thisiswhat Nachos does). Fair.

4. Priority queue — keep ready list sorted by priority field of TCB. This
alows important threads to always get the CPU whenever they need it.

CS 162 Spring 2001 Lecture 4 10/10

