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CS 162 Operating Systems and Systems Programming 
Professor: Anthony D. Joseph 

Spring 2001 
 

Lecture4: Threads and Dispatching  
 

4.0 Main Point: 
Goal: Abstraction that each thread has illusion of its own CPU. 
Hardware: shared CPU, interrupts.  
 
How does this work? 

 

4.1 Threads 
 
Imagine we had the following C program to compute and list the digits of Pi into 
a file and to print out the cs162 class list to another file: 
 

main() { 
ComputePi(“/tmp/pi.text”); 
PrintClassList(“/tmp/clist.text”); 

} 
 
This program would unfortunately never print out the class list since ComputePi() 
will never finish.  
With threads we could have the two activities go on in parallel: 
 

main() { 
CreateThread(ComputePi, “/tmp/pi.text”); 
CreateThread(PrintClassList”, “/tmp/clist.text”); 

} 
 
If we stopped this program and examined it with a debugger we would see two stacks that 
could be listed and two sets of CPU registers to examine. 
 
Note: we can’t simply let each stack “grow” backwards towards the heap anymore! Have to 
worry about stacks overrunning each other. 
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code

global data

heap

stack 1

stack 2
 

 
 
 

Two key concepts: 
   1. thread control block (per-thread state) 
   2. dispatching loop 

 

4.1.1 Per-thread state 
 

Thread Control Block (TCB) 
  (sometimes called a “Process Control Block” or PCB) 
 
This is where all information relevant to the thread is kept.  There is one per active 
thread.  The contents include: 

• execution state: CPU registers, program counter, pointer to stack 
• scheduling information: state (see below) , priority, CPU time used 
• accounting info 
• various pointers (for implementing scheduling queues) 
• etc. (add stuff as you find a need)  
• In Nachos: “Thread” is  a class that includes the TCB 
 

OS keeps an array (or linked list or …) of TCBs in its own protected memory.  We 
describe one approach to this below. 
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4.2 The Lifecycle of a Thread 
 
Threads all go through the lifecycle shown below: 

1) The are created and admitted to the system 
2) They remain in the system, sharing resources with all other threads in the system.  

Of course, only one thread can be actually “running” on the CPU at any time 
(assuming a single-CPU system). 

3) They leave the system. 
 
We will first describe how threads are managed when they are in the system.  We will then 
discuss how thread creation and termination are handle 
 

 

Silberschatz and Galvin 1999  

 
An “active” thread (i.e., one that is in the ready, waiting, or running state) is 
represented in the system by its TCB.  The TCBs are organized into queues based on 
their state.  For threads waiting for an event (I/O, other thread completion, etc.) they 
can be queues for each such event.   An example of such an arrangement is shown 
below: 
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Silberschatz and Galvin  1999 
 

4.3 Dispatching Loop (scheduler.cc)  
 
The main loop of the scheduler is responsible for choosing a thread to run and ensuring 
that thread switching is done correctly.  Conceptually, it looks like this: 
 
Loop { 

Run thread  
 
Choose new thread to run 
 
Save state of old thread from CPU into its TCB 
 
Load state of new thread from its TCB into CPU 
 

} 
 
 
 

4.3.1 Running a thread: 
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How do I run a thread?  Load its state (registers, PC, stack pointer) into the CPU, and 
do a jump to the PC value. 

 
How does dispatcher get control back?  Two ways: 

• Internal events: thread hands control back voluntarily 
• External events: thread gets preempted 

 
Internal events: 
 

• Thread blocks on I/O (e.g., disk I/O, or waiting on keyboard input) 
• Thread blocks waiting on a “signal” from another thread 
• Yield (give CPU to someone else who’s ready to run) 
•  

 
 
 
Yield thread switch example: 
ComputePi() { 

while (TRUE) { 
ComputeNextDigit(); 
yield(); 

} 
} 

 
Stack for yielding thread: 
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run_new_thread

kernel_yield

yield

ComputePi

Trap to OS

 
 
 
run_new_thread() { 

newThread = PickNewThread(); 
switch(curThread, newThread); 
ThreadHouseKeeping(); /*covered next lecture */ 

} 
 
 

4.3.2 Saving/restoring state (often called "context switch"): 
 

What do you need to save/restore when the dispatcher switches to a new thread? 
 
Anything next thread may trash: PC, registers, change execution stack 

 
Want to treat each thread in isolation. 
 
To take an example from the Nachos code: 

What if two threads loop, each calling Yield? 
Yield calls Switch to switch to the next thread.  
But once you start running the next thread, you are on a different execution stack.  
Thus, Switch is called in one thread's context, but returns in the other's!  
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    Thread T switching to Thread S 
 
switch routine (shown here in C syntax, but would be implemented in assembler): 
switch(int tCur, int tNew) { 

/* Save registers of running thread to TCB */ 
TCB[tCur].regs.r7 = CPU.r7; 
… 
TCB[tCur].regs.r0 = CPU.r0; 
TCB[tCur].regs.sp = CPU.sp; 
TCB[tCur].regs.retpc = CPU.retpc; /* return addr */ 
 
/* Load state of new thread into CPU */ 
CPU.r7 = TCB[tNew].regs.r7; 
… 
CPU.r0 = TCB[tNew].regs.r0; 
CPU.sp = TCB[Nnew].regs.sp; 
/* Henceforth running on new thread’s stack */ 
CPU.retpc = TCB[tNew].regs.retpc; 
 
return; 
 
/* Return from switch returns to CPU.retpc */ 

} 
 

Note, the “retpc” is when the return from switch should jump to.  In practice this 
is really implemented as a “jump” to that location. 
There is a real implementation of Switch in Nachos in switch.s; of course, it's magical! 
(but you should be able to follow it) 
 
What if you make a mistake in implementing switch? 

For instance, suppose you forget to save and restore register 4? 
Get intermittent failures depending on exactly when context switch occurred, 
and whether new thread was using register 4. Potentially, system will give wrong 
result, without any warning (if program didn't notice that register 4 got trashed). 
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Can you devise an exhaustive test to guarantee that switch works? No! 
 

 
 

4.3.3 Note: We assume that all threads go through run_new_thread() in order to be 
removed from and reinstated upon the CPU. 

 
Blocked on I/O thread switch example: 

run_new_thread

kernel_read

read

CopyFile

Trap to OS

 
 
Blocked on thread signal example is similar - join. 
 
What if thread never did any I/O, never waited, and didn't yield control?  Dispatcher 
has to gain control back somehow. 
 

 
External events: 
 

• Interrupts – type character, disk I/O request finishes wakes up dispatcher, so it 
can choose another thread to run 

• Timer – like an alarm clock that goes off every n milliseconds 
 
 
 

Interrupts are a special kind of hardware-invoked context switch. No separate step to 
choose what to run next; always run the interrupt handler immediately. 

 
Timer interrupt routine: 

TimerInterrupt() { 
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DoPeriodicHouseKeeping(); 
run_new_thread(); 

} 
 

 
 
 
 
 
 
 
 
Stack of preempted thread: 
 

run_new_thread

TimerInterrupt

SomeRoutine

HW timer interrupt

 
 
I/O interrupt: same as timer interrupt except that DoHouseKeeping() is replaced by 
ServiceIO(). 

 
 

4.3.4 Choosing a thread to run 
 
 

Dispatcher keeps a list of ready (runnable) threads – how does it choose among them? 
 

• Zero ready threads – dispatcher just loops. 
    Alternative is for OS to create an “idle thread” that simply loops or does 
nothing. Then there’s always at least one runnable thread. 

• Exactly one ready thread – easy. 
• More than one ready thread: 

1. LIFO (last in, first out): put ready threads on front of the list, and 
dispatcher takes threads from front.  Results in starvation. 



CS 162 Spring 2001 Lecture 4  10/10 

2. Pick one at random: Starvation can occur. 
3. FIFO (first in, first out): put ready threads on back of list, pull them off 

from the front (this is what Nachos does). Fair. 
4. Priority queue – keep ready list sorted by priority field of TCB. This 

allows important threads to always get the CPU whenever they need it. 
 

 


