CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2001
L ecture 8: Semaphores, Monitors, & Condition Variables

8.0 Main Points:

Definition of semaphores

Example of use of semaphores to solve the bounded buffer problem
Definition of monitors and condition variables

Demondtration of their use in Producer/Consumer problem

8.1 Motivation
Writing concurrent programsis hard because you need to worry about multiple
concurrent activities reading and writing the same memory; hard because ordering
matters.
Synchronization isaway of coordinating multiple concurrent activities that are usng
shared state. What are the right synchronization abstractions, to make it easy to build

correct concurrent programs?

This lecture and the next, present a couple ways of structuring the sharing.

8.2 Definition of Semaphores

Semaphores are akind of generalized lock, first defined by Dijkstrain the late 60's.
Semaphores are the main synchronization primitive used in the origind UNIX.

Semaphores have a non-negative integer vaue, and support the following two
operations:

CS 162 Spring 2001 Lecture 8 1/9

semaphore->P(): an atomic operation that waits for semaphore to become
pogitive, then decrementsit by 1. (can think of as “wait” operation)
semaphore->V(): an atomic operation that increments semaphore by 1, waking
up awaiting P, if any. (canthink of as“sgna” operation)

Semaphores are like integers, except:
1. No negative vaues.
2. Only operationsdlowed are Pand V — can't read or write value, except to set it
initidly.
3. Operations must be atomic: two P'sthat occur together can't decrement the value
below zero. Similarly, thread going to deep in P won't miss wakeup from V, even
if they both happen a about the same time.

Binary semaphor e: like alock (has aboolean vaue). Initidized to 1. P waits until
vaueis, then setsitto 0. V satsvaueto 1, waking up awaiting P, if any.

8.3 Two uses of semaphores

8.3.1 Mutual exclusion (initial value=1)

Binary semaphores can be usad for mutua excluson: initid vaue of 1; () iscdled
before the critica section; and V() is cdled after the critica section.

semaphor e- >P() ;
/1 critical section goes here
semaphor e->V() ;

8.3.2 Scheduling constraints (initial value = 0)

Locks are fine for mutua exclusion, but what if you want athread to wait for
something? For example, suppose you had to implement Threed::Join, which mugt wait
for athread to terminate.

By sdtting the initid vaue to 0 instead of 1, we can implement waiting on a semaphore:

Initial value of semaphore = 0

For k

Thread: : Join calls P [l will wait until sonething nmakes
/'l the semaphore positive.

CS 162 Spring 2001 Lecture 8 2/9

Thread finish calls V /'l makes the senmaphore positive
/1 and wakes up the thread
/1l waiting in Join.

8.4 Producer-consumer with a bounded buffer

8.4.1 Problem definition

Producer puts things into a shared buffer, consumer takes them out. Need
synchronization for coordinating producer and consumer.

Exanple cpp | ccl | cc2 | as | |d (cpp producesbytesforccl,which
consumes them, and in turn produces bytesfor cc2 ...)

Don't want producer and consumer to have to operate in lockstep, so put afixed-size
buffer between them; need to synchronize access to this buffer. Producer needsto

wait if buffer isfull; consumer needs to wait if buffer is empty.

Another example: Coke machine. Producer is delivery person; consumers are students
and faculty.

Solutions uses semaphores for both mutex and scheduling.

8.4.2 Correctness constraintsfor solution
1. Consumer mugt wait for producer to fill buffers, if none full (scheduling congraint)

2. Producer mugt wait for consumer to empty buffers, if dl full (scheduling congraint)

3. Only onethread can manipulate buffer queue a atime (mutud exclusion)

General rule of thumb: Use a separate semaphore for each congraint.
Note how semaphores are being used in multiple ways.
Semaphore ful |l Buffers; /] consuner's constraint

/1 if 0, no coke in machine
Semaphor e enptyBuffers; /| producer's constraint

CS 162 Spring 2001 Lecture 8 3/9

/1 if 0, nowhere to put nore coke
Semaphor e mnut ex; /1 mutual exclusion

8.4.3 Semaphore solution

Semaphore fullBuffers = 0 // initially, no coke!

Semaphore enptyBuffers = nunBuffers;
[l initially, nunber of enpty slots
/| semaphore used to count how many
/'l resources there arel

Semaphore mutex = 1; // no one using the machi ne

Producer () {
enptyBuffers. P(); /1l check if there's space
/1 for nore coke
mut ex. P(); /1 make sure no one el se
/1 is using machi ne
put 1 Coke in nachine

mut ex. V() ; /1l ok for others to use machi ne

full Buffers. V(); /1 tell consumers there's now a
} /1 Coke in the machine
Consuner () {

full Buffers. P(); /1l check if there's a coke

in

/'l the machi ne
mut ex. P(); /1 make sure no one el se
/1 is using machi ne
take 1 coke out;
mut ex. V() ; /1l next person's turn
enptyBuffers. V(); /1 tell producer we need nore

}
8.4.4 Questions

Why does producer P + V different semaphores than the consumer?

Is order of Psimportant?

CS 162 Spring 2001 Lecture 8 4/9

Is order of V'simportant?

What if we have 2 producers or 2 consumers? Do we need to change anything?

8.5 Motivation for monitors and condition variables

Semaphores are a huge step up; just think of trying to do the bounded buffer with only
loads and stores. But the problem with semaphores is that they are dud purpose.
They're used for both mutex and scheduling congtraints. This makes the code hard to
read, and hard to get right.

Ideain monitorsisto separate these concerns: use locks for mutua exclusion and
condition variables for scheduling condraints.

8.6 Monitor Definition

Monitor: alock and zero or more condition variables for managing concurrent
access to shared data

Note: Textbook describes monitors as a programming language congtruct, where the
monitor lock is acquired automatically on calling any procedurein a C++ class. No
widdy-used language actualy does this however! (athough Java comes close, with its
“synchronized” objects). In Nachos, and in many red-life operating systems, such as
Windows NT, OS2, or Solaris, monitors are used with explicit calsto locks and
condition variables.

CS 162 Spring 2001 Lecture 8 5/9

Monitor with condition variables |\

enlry Guews

shared daia

queLes associabed 'm".h{ x—e e =T
X, y conditions ¥ —{ 3+

A

paralions
initialization
code
Operating System Concepts 6.43 Silberschatz and Galvin01999

8.6.1 Lock
Thelock provides mutua excluson to the shared data. Remember:

Lock: : Acqui r e —wait until lock isfree, then grab it
Lock: : Rel ease — unlock, wake up anyone waiting in Acquire

Rulesfor usng alock:
Always acquire before ng shared data structure
Always release fter finishing with shared data.
Lock isinitidly free.

Smple example: a synchronized list

AddToQueue() {
| ock. Acquire(); /1 1 ock before using
shared data

CS 162 Spring 2001 Lecture 8 6/9

put item on queue;
shared data

| ock. Rel ease();

wi th shared

RemoveFr omQueue() {
| ock. Acquire();
shared data

I

I

I

I

i f something on queue//

shared data

renove it;
| ock. Rel ease();
wi th shared

return item

}

8.6.2 Condition variables

I

I

ok to access

unl ock after done

dat a

| ock before using

ok to access

unl ock after done

dat a

How do we change RemoveFromQueue to wait until something is on the queue?

Logicdly, we want to go to deep ingde of the critica section, but if we hold the lock
when we go to deep, other threads won't be able to get in to add things to the queue, to

wake up the deeping thread.

Key ideawith condition variables: make it possible to go to deep indde critical section,
by atomically releasing lock at same time we go to deep

Condition variable: a queue of threads waiting for something inside a critical

section

Condition variables support three operations:
Wait() — Release lock, go to deep, re-acquire lock
Releasing lock and going to deep is atomic

CS 162 Spring 2001 Lecture 8

7/9

Signal() — Wake up awaiter, if any
Broadcast() — Wake up dl waiters

Rule: must hold lock when doing condition variable operations.

Note: In Birrell paper, he says can do sgna outside of lock — IGNORE HIM (thisis
only a performance optimization, and likely to lead you to write incorrect code).

A synchronized queue, using condition variables:
AddToQueue() {
| ock. Acquire();
put item on queue;
condi tion.signal ();
| ock. Rel ease();

RermoveFr omQueue() {
| ock. Acquire();
whi | e not hi ng on queue
condition.wait (& ock);// release |lock; go to
/'l sleep; re-acquire |ock

renove item from queue;

| ock. Rel ease();

return item

8.6.3 Mesavs. Hoare monitors

Need to be careful about the precise definition of sgna and wait.

M esa-style: (Nachos, most real operating systems)
Signaer keeps lock, processor
Waiter smply put on ready queue, with no specid priority.
(in other words, waiter may have to wait for lock)

CS 162 Spring 2001 Lecture 8 8/9

Hoare-style: (most textbooks)
Signder gives up lock, CPU to waiter; waiter runsimmediately
Waiter gives lock, processor back to sgnder when it exits critica section or
if it wats again.

Above code for synchronized queuing happens to work with ether style, but for many
programs it matters which one you are usng. With Hoare-gyle, you can change "while"
in RemoveFromQueueto an "if", because the waiter only gets woken up if thereé san
itemison the lig. With Mesa-style monitors, waiter may need to wait again after being
woken up, because some other thread may have acquired the lock, and removed the
item, before the origina waiting thread gets to the front of the ready queue.

This means as agenerd principle, you almost always need to check the condition after
the wait, with Mesa- style monitors (in other words, use a"while" ingtead of an "if").

CS 162 Spring 2001 Lecture 8 9/9

