CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2001

L ecture 9: ReadersWriters;, Language Support for
Synchronization

9.0 Main points:

Review definition of monitors and condition variables

[llustrate use of monitors and condition variables by solving readers-writers problem
Language support can make thread programming eesier.

Threads are afundamental OS abstraction, but be careful about how you use them.

Summarize concurrency section

9.1 Readers/Writers

9.1.1 Motivation
Shared database (for example, bank balances, or airline seats)

Two classes of users:
Readers — never modify database
Writers — read and modify database

Using asingle lock on the database would be overly restrictive. Wart:
many readers at sametime
only one writer at sametime

9.1.2 Congraints

1. Readers can access database when no writers (Condition ok ToRead)
2. Writers can access database when no readers or writers (Condition ok ToWrite)

CS 162 Spring 2001 Lecture 9 112

3. Only orethread manipulates Sate variables a atime.

9.1.3 Solution
Basic dtructure of solution
Reader
wait until no witers
access dat abase
check out — wake up waiting witer
Witer

wait until no readers or witers
access dat abase
check out — wake up waiting readers or witer

State vari abl es:

of active readers — AR =0
of active witers — AW =0
of waiting readers — WR =0
of waiting witers — WV =0

Conditi on okToRead = N L
Condition okToWite = N L
Lock | ock = FREE

CS 162 Spring 2001 Lecture 9 2/12

Code:
Reader () {
[l first check self into system
| ock. Acquire();
while ((AW+ WN > 0) { /1l check if safe to read
[l if any witers, wait

VR++;
okToRead. Wi t (& ock) ;
WR- - ;

}

AR++;

| ock. Rel ease();

Access DB

/1l check self out of system
| ock. Acquire();
AR- -
if (AR ==0 & WV> 0) [lif no other readers stil
/] active, wake up witer
okToWite. Si gnal (& ock);
| ock. Rel ease();

CS 162 Spring 2001 Lecture 9 3/12

Witer() { /[l symretrical
/1 check in
| ock. Acquire();
while ((AW+ AR) > 0) { /'l check if safe to wite
/1l if any readers or
[l witers, wait

WIM-+;
okToWite->Wait (& ock);
VW -

}

AW+

| ock. Rel ease();

Access DB

/'l check out

| ock. Acquire();

AW -

if (WV> 0) /1l give priority to other witers
okToW it e->Si gnal (& ock);

else if (WVR > 0)
okToRead- >Br oadcast (& ock) ;

| ock. Rel ease();

Questions.

1. Canreaders tarve?

2. Why does checkRead need awhile?

CS 162 Spring 2001 Lecture 9 4/12

9.2 Comparison between semaphores and monitors

[llugtrate the differences by considering: can we build monitors out of semaphores?
After dl, ssemaphores provide atomic operations and queuing.

Does thiswork?
Wait() { semaphore->P(); }

Signal () { semaphore->V(); }

Condition variables only work ingde of alock. If you try to use semaphoresinsde of a
lock, you have to watch for deadlock.

Does thiswork?

Wai t (Lock *Iock) {
| ock->Rel ease();
semaphor e- >P() ;
| ock->Acquire();
}

Signal () {
semaphor e->V() ;

Condition variables have no history, but ssmaphores do have history.

What if thread sgnals and no one is waiting?
No op.

What if thread later waits?
Thread waits.

What if thread V's and no oneiswaiting?
Increment.

What if thread later does P?
Decrement and continue.

CS 162 Spring 2001 Lecture 9 5/12

In other words, P + V are commutative — result is the same no matter what order they
occur. Condition varigbles are not commutative. That's why they must bein acritica
section — need to access state variables to do their job.

Doesthisfix the problem?

Signal () {
if semaphore queue is not enpty

semaphore->V();

For one, not legd to look at contents of semaphore queue. But aso: race condition —
sgnder can dip in after lock is released, and before wait. Then waiter never wakes up!

Need to release lock and go to deep atomicdly.

Isit possible to implement condition variables usng semaphores? Yes, but exercise left
to the reader!

9.3 Summary of Monitors
Monitors represent the logic of the program — wait if necessary, sgnd if change
something so waiter might need to wake up.

| ock

while (need to wait) {
wait();

}

unl ock
do sonething so no need to wait

| ock
signal ();
unl ock

CS 162 Spring 2001 Lecture 9 6/12

Fall 1999 1.5 hour Lecture 8 continued here...

9.4 Language support for thread synchronization

The problem with requiring the programmer to specify lock acquire and release
datementsisthat he might forget to put arelease everywhere it is needed.

9.4.1 LanguageslikeC

Thisisnot too bad in alanguage like C: just make sure you know all the code paths out
of acritical section.

int Rin() {
| ock. acquire();

if (exception) {
| ock. rel ease();
return errReturnCode;

| ock. rel ease();
return CK

}

Watch out for set j np/ | ongj mp!

9.4.2 Languageslike C++
Languages that support exceptions— like C++ — are more problematic:

void Rin() {
| ock. acquire();

DoFoo() ;
| ock. rel ease();

}

CS 162 Spring 2001 Lecture 9 7/12

9.4.3

voi d DoFoo() {
if (exception) throw errException;

}

Rt n() needsto catch the exception, release the lock, and then re-throw the exception:
void Rin() {
| ock. acquire();

try {

DoFoo() ;

}

catch (.) { // C++ syntax for catching any exception.
| ock. rel ease();
throw, // C++ syntax for re-throw ng an exception.

}

| ock. rel ease();

}

Java

Java has explicit support for threads and thread synchronization.

Bank account example:

cl ass Account {
private int bal ance;

/| object constructor
public Account (int initialBalance) {
bal ance = initi al Bal ance;

public synchronized int getBal ance() {

return bal ance;

CS 162 Spring 2001 Lecture 9 8/12

public synchroni zed voi d deposit(int anount) ({
bal ance += anount;

}

Each Account object has an associated |ock, which gets automatically acquired and
released on entry and exit from each synchronized method.

Java aso has synchronized statements:
synchroni zed (object) {

CS 162 Spring 2001 Lecture 9 9/12

Every Java object has an associated lock. Any Java object can be used to control
access to a synchronized block of code. The synchronizing object’slock is acquired on
entry and released on exit, even if exit is by means of a thrown exception:

synchroni zed (object) {

DoFoo() ;

}
voi d DoFoo() {

t hrow err Exception

}

How to wait in a synchronized method or code block:
void wait(long tineout);
void wait(long timeout, int nanoseconds);
void wait();

How to sgnd in a synchronized method or code block:
void notify(); wakes up the |longest waiting waiter
void notifyAll(); like broadcast,wakes up all waiters

Notes:
Only one condition variable per lock.
Condition variables can wait for abounded length of time. Thisis useful for
handling exception cases where something has failed. For example:

tl = tinme. now);
while (! ATMRequest ()) {
wai t (LONG_TI ME) ;
t2 = tinme.now);
if (t2 —tl1l > LONG TIME) ChecklfMachi neBroken();
}

Onereason why all Java Virtual Machines are not equivalent:

CS 162 Spring 2001 Lecture 9 10/12

Different thread scheduling policies. The language specification does not
dipulate whether preemptive scheduling is required or what granularity of time
dice should be used if preemptive scheduling is provided.

9.5 Concurrency Summary
Bascideain al of computer science is to abstract complexity behind clean interfaces.

Weve done that!

Physica Hardware Programming Abstraction

Single CPU, interrupts, test& set Concurrent sequentia execution, infinite # of
CPUs, semaphores and monitors

Every mgor operating system built since 1985 has provided threads — Mach, 0S/2,
NT (Microsoft), Solaris (SUN), OSF (DEC/Compaq Alphas), and Linux. Why?
Because makesit alot easier to write concurrent programs, from Web servers, to
databases, to embedded systems.

So does this mean you should al go out and use threads?

9.6 Cautionary Tale: OS/2

Illustrates why an abstraction doesn't dways work the way you want it to.

Microsoft OS/2 (around 1988): initidly, a spectacular failure. Since then, IBM has
completely re-written it from scratch.

Used threads for everything — window systems, communication between programs, etc.
Threads are agood idea, right?

Thus, system creeted lots of threads, but few actualy running at any one time — most waiting

around for user to type in awindow, or for anetwork packet to arrive.

Might have 100 threads, but just afew at any onetime on the ready queue. And each thread

needs its own execution stack, say, 9KB, whether it is runnable or waiting.

CS 162 Spring 2001 Lecture 9 11/12

Reault: system needs an extra 1l M B of memory, mostly consumed by waiting threads.
1 MB of memory cost $200 in 1988.

Put yoursdlf in the customer's shoes. Did OS2 run Excd or Word better? OK, it gave
you the ability to keep working when you use the printer, but is that worth $200?

Moral: threads are cheap, but they're not free.

On the other hand: today 1MB of memory costs less than $2.50. The definition of
what'’ s cheap and what’ s expensive has changed!

Who are operaing systems features for?
Operating system developer?
End user?

Lots of operating systems research has been focused on making it easier for operating
sysems developers, because it is so complicated to build operating systems.

But the trick to sdlling it isto make it better for the end user.

So, why might making things eesier for the OS devel oper be advantageous to the end
user and, more importantly, to the company sdlling the OS?

Things that make an OS dower will fal because the end user will see the downess.
Things that are neutrd to the end user, but enable better OS devel opment will succeed
because of improved:

time-to-market

cost of maintenance

CS 162 Spring 2001 Lecture 9 12/12

