
CS 162 Spring 2004 Lecture 3 1/7

CS 162 Operating Systems and Systems Programming
Professor: Anthony Joseph

Spring 2004

Lecture 3:
Concurrency: Processes, Threads, and Address Spaces

3.0 Main point:

What are processes?

How are they related to threads and address spaces?

3.1 Concurrency

3.1.1 Definitions:

Uniprogramming: one process at a time (e.g., MS/DOS, early Macintosh)

Easier for operating system builder: get rid of problem of concurrency by defining

it away. For personal computers, idea was: one user does only one thing at a

time.

Harder for user: can’t work while waiting for printer

Multiprogramming: more than one process at a time (UNIX, OS/2, Windows

NT). Note: This is often called multitasking, but multitasking sometimes has

other meanings – see below – so not used in this course.

3.1.2 The basic problem of concurrency:

• Hardware: single CPU, I/O interrupts.

• API: users think they have machine to themselves.

OS has to coordinate all the activity on a machine: multiple users, I/O interrupts, etc.

How can it keep all these things straight?

CS 162 Spring 2004 Lecture 3 2/7

Answer: Decompose hard problem into simpler ones. Instead of dealing with

everything going on at once, separate into logical abstractions that we can deal

with one at a time.

3.2 Processes

The notion of a “process” is a central concept for Operating Systems.

Process: Operating system abstraction to represent what is needed to run a single
program (this is the traditional UNIX definition)

Formally, a process is a sequential stream of execution in its own address space.

3.2.1 Two parts to a (traditional Unix) process:

1. Sequential program execution: the code in the process is executed as a

single, sequential stream of execution (no concurrency inside a process). This

is known as a thread of control.

2. State Information: everything specific to a particular execution of a program:
Encapsulates protection: address space

• CPU registers

• Main memory (contents of address space)

• I/O state (in UNIX this is represented by file descriptors)

CS 162 Spring 2004 Lecture 3 3/7

3.2.2 Process =? Program

A program is, for example, a set of C statements or commands (vi, ls)

main(){
...
}
A() {
...
}

PROGRAM

main(){
...
}
A() {
...
}

PROCESS

main
A

registers, PC

heap

stack

1. More to a process than just a program:

• Program is just part of process state.

• I run emacs on lecture.txt, you run emacs on homework.java – same

program, different processes.

2. Less to a process than a program:

• A program can invoke more than one process to get the job done

• cc starts up cpp, cc1, cc2, as, ld (each are programs themselves)

CS 162 Spring 2004 Lecture 3 4/7

3.3 Multiple Threads of Control

The traditional notion of a Process can be extended to allow for additional
concurrency:

Thread: a sequential execution stream within a process (concurrency)

(Sometimes called: a “lightweight” process.). Provides the illusion that each

activity (or thread) is running on its own CPU, entirely sequentially.

Address space: all the state needed to run a program (literally, all the addresses

that can be touched by the program). Provides the illusion that a program is

running on its own machine (protection).

3.3.1 Why separate the concept of a thread from that of a process?

1. Discuss the “thread” part of a process (concurrency), separately from the

“address space” part of a process (protection).

2. Many situations where you want multiple threads per address space.

Question: Why would you want this?

Multithreading: a single program made up of a number of different concurrent
activities (sometimes called multitasking, as in Ada, just to be confusing!)

3.3.2 Examples of multithreaded programs

1. Embedded systems: elevators, planes, medical systems, wristwatches, etc.

Single program, concurrent operations.

2. Most modern OS kernels: internally concurrent because have to deal with

concurrent requests by multiple users. But no protection needed within

kernel.

3. Database Server: provides access to shared data by potentially many

concurrent users. Also has background utility processing that must get done.

CS 162 Spring 2004 Lecture 3 5/7

4. Network servers: user applications that get multiple requests concurrently off

the network. Again, single program, multiple concurrent operations

(examples: file servers, Web server, and airline reservation systems)

5. Parallel programming: split program into multiple threads to make it run

faster. This is called multiprocessing.

 Multiprogramming = multiple jobs or processes

 Multiprocessing = multiple CPUs

Some multiprocessors are in fact uniprogrammed – multiple threads in one

address space, but only run one program at a time.

3.3.3 Thread State

What state does a thread have?

 Some state shared by all threads in a process/address space:

• Contents of memory (global variables, heap)

• I/O state (file system)

 Some state “private” to each thread – each thread has its own copy

• CPU registers (including, program counter)
• Execution stack – what is this?

Execution stack: where parameters, temporary variables, and return PC are kept,

while called procedures are executing (for example, where are A’s variables kept,

while B, C are executing?)

CS 162 Spring 2004 Lecture 3 6/7

 A(int tmp) {
 if (tmp< 2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}
A; tmp = 1

B

C

A; tmp = 2

Execution stack
A(1);

Threads encapsulate concurrency; address spaces encapsulate protection:

Keeps a buggy program from trashing everything else on the system.

Address state is passive; thread is active

3.4 Classification

Real operating systems have either

• One or many address spaces

• One or many threads per address space

of address spaces:

of threads per address

space:

one many

One

MS/DOS, early Macintosh Traditional UNIX

Many embedded systems
JavaOS, Pilot (PC)

Mach, OS/2, Windows 95,
Win NT to XP, Solaris,
Linux, HP-UX, OS X,...

Examples:

1. MS/DOS – one thread, one address space

2. Traditional UNIX – one thread per address space, many address spaces

CS 162 Spring 2004 Lecture 3 7/7

3. Mach, Microsoft NT, new UNIX (Linux, Solaris, HPUX) – many threads per

address space, many address spaces

4. Embedded systems (Geoworks, VxWorks, JavaOS, etc.). Also, Pilot (the

operating system on the first personal computer ever built) – many threads,

one address space (idea was: no need for protection if single user)

3.5 Summary

Processes have two parts: threads and address spaces.

Book talks about processes: when this concerns concurrency, really talking about

thread portion of a process; when this concerns protection, really talking about

address space portion of a process.

