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CS 162 Operating Systems and Systems Programming 
Professor: Anthony D. Joseph 

Spring 2004 

 
Lecture 5: Independent vs. cooperating threads 

 

5.0 Main points 

Thread Creation 

Why do we need to handle cooperating threads? 

Atomic operations 

 

5.1 Thread creation 

 

Thread “fork” – create a new thread, three arguments: 

•  Pointer to application routine to execute (fcnPtr) 

•  Pointer to arguments records (fcnArgPtr) 

•  Size of stack to allocate 

 

Thread fork implementation: 

•  Sanity check arguments. 

•  Enter kernel mode and allocate a stack. 

•  Allocate a new TCB and initialize its register fields. In particular, 

the stack pointer is made to point at the stack, the PC return 

address is made to point at an OS (assembler) routine ThreadRoot, 

and two of the registers are initialized to fcnPtr and fcnArgPtr 

•  Put the newly allocated TCB on the ready list (Runnable). This 

will cause it to eventually be dispatched by run_new_thread, and 

start running the routine ThreadRoot. 

•  ThreadRoot: 

•  Do start-up housekeeping (e.g., record start time). 

•  Return to user mode. 

•  Call fcnPtr(fcnArgPtr). 

•  Do thread finish-up:call ThreadFinish. 

•  ThreadFinish: 
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•  Put any threads waiting on the termination of this thread on the 

ready list. 

•  Can’t deallocate thread yet, since we’re still running on its stack. 

Record thread as “waitingToBeDestroyed”. 

•  Call run_new_thread to run anther thread. ThreadHouseKeeping 

will examine waitingToBeDestroyed and deallocate the finished 

thread’s TCB and stack. 

 

 

 

run_new_thread() { 

newThread = PickNewThread(); 

switch(curThread, newThread); 

ThreadHouseKeeping(); /* discussed later */ 

} 
 

Thread fork is not the same thing as UNIX “fork”.  UNIX fork creates a new 

process, so it has to create a new address space, in addition to a new thread. 

 

For now, don’t worry about how switching between different processes’ address 

spaces is done. 

 

Thread fork is very much like an asynchronous procedure call – it means, go do 

this work, where the calling thread does not wait for the callee to complete.  What 

if the calling thread needs to wait? 

 

 

Thread Join – wait for a forked thread to finish. 

 

Thus, a traditional procedure call is logically equivalent to doing a fork then 

immediately doing a join. 
 
 This is a normal procedure call: 

A() { B(); } 

B() { } 
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The procedure A can also be implemented as: 

A’() {  

Thread t = new Thread;  

t->Fork(B); 

t->Join();  

} 

 

 

 

 

5.2 Multiprocessing vs. Multiprogramming 

Multiprocessing = multiple CPU 

Multiprogramming = multiple jobs or processes 

Definition of “run concurrently” – scheduler is free to run threads in any order 

(e.g., FIFO, random, etc.) 

 

For example: 

A 
B 
C

Multiprocessing

Multiprogramming

A B C

A B C A B B

 
 
 

Dispatcher can choose to run each thread to completion, or time-slice in big 

chunks, or time slice so that each thread executes only one instruction at a time 

(simulating a multiprocessor, where each CPU operates in lockstep). 
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If the dispatcher can do any of the above, programs must work under all cases, for 

all interleavings.  

 
 

So how can you know if your concurrent program works?  Whether all 

interleavings will work? 

 

5.3 Definitions 

Independent threads: 

•  No state shared with other threads 

•  Deterministic – input state determines result 

•  Reproducible  

•  Scheduling order doesn’t matter 

 

 

Cooperating threads: 

•  Shared state 

•  Non-deterministic 

•  Non-reproducible 

 

Non-reproducibility and non-determinism means that bugs can be intermittent. 
This makes debugging really hard! 

 
 

5.4 Why allow cooperating threads? 
 
 

People cooperate; and computers model people’s behavior, so computers at some 

level have to cooperate! 

 

1. Share resources/information 

•  One computer, many users 

•  One bank balance, many ATMs  

•  Embedded systems (ex: robot control) 
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2. Speedup 

•  Overlap I/O and computation 

•   UNIX file system does read ahead 

•  Multiprocessors – chop up program into smaller pieces 

 

3. Modularity 

•  chop large problem up into simpler pieces. 

For example, to compile: gcc – cpp | cc1 | cc2 | as | ld  

 

This makes the system easier to extend; you can replace the assembler 

without changing the loader. 

 

5.5 Some simple concurrent programs 

 

Most of the time, threads are working on separate data, so scheduling order 

doesn’t matter: 
 

Thread A Thread B 

x = 1 y = 2 

 

What about: initially, y = 12 

x = 1 y = 2 

 

x = y + 1 y = y * 2 

 

What are the possible values for x after the above?  

What are the possible values of x below? 

    

x = 1 x = 2 
 

Can’t say anything useful about a concurrent program without knowing what are 

the underlying indivisible operations! 

 

CS 162 Spring 2004 Lecture 5  6/6 

5.6 Atomic operations 

 
What we want is some way of allowing a thread to perform a task without having 
other threads interfere with the task. 
 
Atomic operation: an operation that always runs to completion, or not at all. It is 
indivisible: it can’t be stopped in the middle, and its state can’t be modified by 
someone else during the operation. 

 
On most machines, memory reference and assignment (i.e., load and store) of 
words are atomic. 
 
Many instructions are not atomic. For example, on most 32-bit architectures, 
double precision floating point store is not atomic; it involves two separate 
memory operations. 

 


