
CS 162 Spring 2004 Lecture 5 1/6

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2004

Lecture 5: Independent vs. cooperating threads

5.0 Main points

Thread Creation

Why do we need to handle cooperating threads?

Atomic operations

5.1 Thread creation

Thread “fork” – create a new thread, three arguments:

• Pointer to application routine to execute (fcnPtr)

• Pointer to arguments records (fcnArgPtr)

• Size of stack to allocate

Thread fork implementation:

• Sanity check arguments.

• Enter kernel mode and allocate a stack.

• Allocate a new TCB and initialize its register fields. In particular,

the stack pointer is made to point at the stack, the PC return

address is made to point at an OS (assembler) routine ThreadRoot,

and two of the registers are initialized to fcnPtr and fcnArgPtr

• Put the newly allocated TCB on the ready list (Runnable). This

will cause it to eventually be dispatched by run_new_thread, and

start running the routine ThreadRoot.

• ThreadRoot:

• Do start-up housekeeping (e.g., record start time).

• Return to user mode.

• Call fcnPtr(fcnArgPtr).

• Do thread finish-up:call ThreadFinish.

• ThreadFinish:

CS 162 Spring 2004 Lecture 5 2/6

• Put any threads waiting on the termination of this thread on the

ready list.

• Can’t deallocate thread yet, since we’re still running on its stack.

Record thread as “waitingToBeDestroyed”.

• Call run_new_thread to run anther thread. ThreadHouseKeeping

will examine waitingToBeDestroyed and deallocate the finished

thread’s TCB and stack.

run_new_thread() {

newThread = PickNewThread();

switch(curThread, newThread);

ThreadHouseKeeping(); /* discussed later */

}

Thread fork is not the same thing as UNIX “fork”. UNIX fork creates a new

process, so it has to create a new address space, in addition to a new thread.

For now, don’t worry about how switching between different processes’ address

spaces is done.

Thread fork is very much like an asynchronous procedure call – it means, go do

this work, where the calling thread does not wait for the callee to complete. What

if the calling thread needs to wait?

Thread Join – wait for a forked thread to finish.

Thus, a traditional procedure call is logically equivalent to doing a fork then

immediately doing a join.

 This is a normal procedure call:

A() { B(); }

B() { }

CS 162 Spring 2004 Lecture 5 3/6

The procedure A can also be implemented as:

A’() {

Thread t = new Thread;

t->Fork(B);

t->Join();

}

5.2 Multiprocessing vs. Multiprogramming

Multiprocessing = multiple CPU

Multiprogramming = multiple jobs or processes

Definition of “run concurrently” – scheduler is free to run threads in any order

(e.g., FIFO, random, etc.)

For example:

A
B
C

Multiprocessing

Multiprogramming

A B C

A B C A B B

Dispatcher can choose to run each thread to completion, or time-slice in big

chunks, or time slice so that each thread executes only one instruction at a time

(simulating a multiprocessor, where each CPU operates in lockstep).

CS 162 Spring 2004 Lecture 5 4/6

If the dispatcher can do any of the above, programs must work under all cases, for

all interleavings.

So how can you know if your concurrent program works? Whether all

interleavings will work?

5.3 Definitions

Independent threads:

• No state shared with other threads

• Deterministic – input state determines result

• Reproducible

• Scheduling order doesn’t matter

Cooperating threads:

• Shared state

• Non-deterministic

• Non-reproducible

Non-reproducibility and non-determinism means that bugs can be intermittent.
This makes debugging really hard!

5.4 Why allow cooperating threads?

People cooperate; and computers model people’s behavior, so computers at some

level have to cooperate!

1. Share resources/information

• One computer, many users

• One bank balance, many ATMs

• Embedded systems (ex: robot control)

CS 162 Spring 2004 Lecture 5 5/6

2. Speedup

• Overlap I/O and computation

• UNIX file system does read ahead

• Multiprocessors – chop up program into smaller pieces

3. Modularity

• chop large problem up into simpler pieces.

For example, to compile: gcc – cpp | cc1 | cc2 | as | ld

This makes the system easier to extend; you can replace the assembler

without changing the loader.

5.5 Some simple concurrent programs

Most of the time, threads are working on separate data, so scheduling order

doesn’t matter:

Thread A Thread B

x = 1 y = 2

What about: initially, y = 12

x = 1 y = 2

x = y + 1 y = y * 2

What are the possible values for x after the above?

What are the possible values of x below?

x = 1 x = 2

Can’t say anything useful about a concurrent program without knowing what are

the underlying indivisible operations!

CS 162 Spring 2004 Lecture 5 6/6

5.6 Atomic operations

What we want is some way of allowing a thread to perform a task without having
other threads interfere with the task.

Atomic operation: an operation that always runs to completion, or not at all. It is
indivisible: it can’t be stopped in the middle, and its state can’t be modified by
someone else during the operation.

On most machines, memory reference and assignment (i.e., load and store) of
words are atomic.

Many instructions are not atomic. For example, on most 32-bit architectures,
double precision floating point store is not atomic; it involves two separate
memory operations.

