
CS 162 Spring 2004 Lecture 24 1/6

CS 162 Operating Systems and Systems Programming
Professor: Anthony D. Joseph

Spring 2004

Lecture 24: Course Review

24.0 Course Goals
1. Provide you with the knowledge you need to make informed decisions.

• Is it better to buy a computer with more memory or a faster processor

(or faster memory versus faster processor)?

• Why is my company’s Web server slow? Is it the network, the server,

the application?

2. Experience with different design tradeoffs, choices, and decisions.

• What is the cost of using a software modem instead of a hardware

modem? Everything that’s done in hardware can be done in software,

but when does it make sense?

• How do I enable my company’s users to share information with

collaborators at other companies? With good performance. Without

compromising security.

3. Design abstractions: separating policy from mechanism

• What abstractions should the operating system provide?

• How should I implement privacy controls?

24.1 OS as Illusionist
We used the Operating System as starting point for understanding/analyzing the

issues.

Operating systems have two functions:

1. Coordinator and traffic cop

2. Standard services

Physical Reality Abstraction

Single CPU Infinite # of CPUs

(multiprogramming)

Interrupts Cooperating sequential threads

CS 162 Spring 2004 Lecture 24 2/6

Limited memory Unlimited virtual memory

No protection Each address space has its own

machine

Unreliable, fixed size messages Reliable, arbitrary messages and

network services

24.2 Concepts
We’ve abstracted out three key concepts. They apply to more than just operating

systems

1. Locality/Caching – basis for TLB’s, paging, file systems, distributed systems,

etc.

• Spatial versus temporal locality

• Thrashing

• Multi-level hierarchies

• Same issue in HW and SW

2. Scheduling – adaptive management of resources

• Constrained resources require careful management

• Multi-level adaptive feedback

• Countermeasures for misbehaving users and applications

3. Layering – Abstraction on top of abstraction

• Use divide and conquer to simplify a hard problem.

• Makes it easier to design, debug, extend

• Performance penalty

CS 162 Spring 2004 Lecture 24 3/6

24.3 Major topics
1. Threads: state, creation, dispatching

• Why – Abstraction for concurrency: overlap I/O and computation, share

HW resources (and information) across multiple users and programs.

Modularity makes system easier to extend.

• How – Context switching, and thread dispatching (mechanism).and

scheduling. Decompose task into smaller units/functions.

• But – performance overhead for context switching.

2. Synchronization: races, inconsistency, semaphores, monitors, and condition

variables.

• The cost of concurrency! Without sharing concurrency is useless, but

remember the “Too Much Milk Lecture”

• Non-reproducibility – Hard to debug!

• Use atomic operations as a start, but complicated to use and OS

interactions (load/store, interrupt disable, test&set).

• Create higher level abstractions to ease the burden:

o Critical sections and mutual exclusion – policy.

o Locks and semaphores – mechanism.

o Monitors: separate mutex (locks) and scheduling constraints

(condition variables) – mechanisms.

• Language-level interactions with primitives. Be careful!

• Biggest caveats: Deadlock and starvation

o Starvation: Indefinite waiting for a resource by a thread (can

end, but doesn’t have to).

o Deadlock: Circular chain of waiting (doesn’t end without

external intervention). Requires: limited resource, no resource

preemption, multiple independent requests, circular chain of

requests. Break the chain – detect/fix or prevent

3. Scheduling: shortest (remaining) time to completion first, round robin, FIFO

• Policy: minimize response time, maximize throughput, fair.

• Lots of choices: algorithm, time slice, dynamic adaptation (multi-level

feedback), etc. – most choices don’t really matter unless resources are

constrained.

4. Memory management & address spaces:

• Isolate processes/programs from all others and OS– protection.

CS 162 Spring 2004 Lecture 24 4/6

o Dual mode operation: kernel versus user mode – operations

themselves must be protected: How do you enter/leave kernel

mode?

o This can be done without hardware support:

 Strong typing

 Software fault isolation

o But inter-process communication breaks this (bugs can leak).

• Illusion of infinite memory:

o Build a hierarchy out of fast, small -> large, small technologies

• Transparent (can’t tell if physical memory is shared)

o Address translation

o Base & bounds, paging, segmentation, multi-level translation,

TLB’s for caching/performance (replacement policy and write-

back/write-through are considerations – thrashing).

o Complexity versus functionality tradeoffs

5. Virtual memory: demand paging, thrashing

• Exploit spatial and temporal locality

• Caching misses: compulsory, capacity, conflict, policy

• Lots of page replacement policies: Again, most important when resources

are limited! Approximations work well.

• Application working set size is important

6. File systems:

• I/O system performance: overhead, latency, bandwidth

o Disk seeks, rotational delay, sector sizes

o Scheduling is important: FIFO, elevator (SCAN)

• File headers and directories: abstraction of bytes, named files, protection,

durability

o Management policies based upon file usage patterns

o Caching for performance

o Protection and access control are important

o Transactions: Implement atomic, persistent operations

(durability) for unreliable components.

 Two-phase locking for coordinating multiple threads

7. Distributed computing

• Cheaper, more reliable, incremental scalability

CS 162 Spring 2004 Lecture 24 5/6

• In reality, not more reliable

• Coordination is more difficult than in single machine case.

8. Networks: protocol layers, windowing, RPC

• Build protocols layer-by-layer

• Lots of different network technologies

• Goals: arbitrary message size, ordered, reliable, process-to-process, routed

anywhere, secure

• Goals are hard (lots can go wrong)

• Remote Procedure Call is key abstraction for 2-way communication:

o Cross-domain communication

o Location-transparency

o Microkernel is ultimate in RPC usage

9. Network file systems: cache coherence

• Transparent access to files on a remote disk: NFS, AFS

• Caching, consistency, and false sharing issues

• Multiprocessors: shared-bus, switched, Network of Workstations (Similar

problems to filesystems)

10. Security: access control, encryption, Trojan horses

• Why you should never trust a computer!

• Intentional and accidental misuse

• Three parts:

o Authentication – who user is

 Passwords, encryption (private and public key

encryption)

o Authorization – who is allowed to do what

 Access control lists

o Enforcement – make sure people do what they’re supposed to

do

 Kernel does this for OS

24.4 Problem Areas
1. Performance

Abstractions like threads, RPC aren’t free

Remember threads in OS/2

Caching doesn’t work when there’s little locality

CS 162 Spring 2004 Lecture 24 6/6

2. Failures – how do we build systems that continue to work even when parts of

the system break?

Still a problem today!

3. Security – basic tradeoff between making computer systems easy to use vs.

hard to misuse

24.6.1 Reasons to Stay Broad

