
L i n k e r s  a n d  L o a d e r s  

LEON PRESSER AND JOHN R. WHITE 

University of Cahforn~a,* 
Santa Barbara, Califorma 93106 

This  is a tu tor ia l  paper  on the l inking and loading stages of the language 
t rans format ion  process Firs t ,  loaders are classffied and discussed Next,  the 
hnk ing  process is t rea ted  in te rms of the var ious t imes at  whmh it  may occur 
(i e , b inding to logical space). Final ly,  the hnk ing  and loading func tmns  are 
explained m detail  t h rough  a careful examina t ion  of the i r  implementa t ion  m the 
IBM System/360 Examples are presented,  and a number  of possible sys tem 
trade-offs are pointed out. 

Keg words and phrases binary  loaders,  re locat ing loaders,  hnk lng  loaders,  l inkers,  
compilers, assemblers,  relocation,  program modular i ty ,  hbra r ies  

CR categories 4 11, 4.12, 4.39 

1. INTRODUCTION 

A computer system includes a set of soft- 
ware and hardware facilities which super- 
vises its operation, insures its coordination, 
and facilitates its use. Such facilities are 
referred to as the computer 's  operating sys- 
tern. From a functional viewpoint it is lusti- 
fiable to separate from the operating system 
those modules which facilitate the m a n /  
computer commumcat ion process. This sop- 
aration comes about  since a computer un- 
derstands its machine language, while it is 
much more natural  for a user to program in 
a high-level language (e.g., FORTRAN, P L /  
I ) .  Thus, it is necessary to t ransform a pro- 
gram written m a high-level language into a 
properly formatted binary string before it 
can be executed. In its most basic form this 
t ransformation process occurs m two stages 
(see Figure 1). First, a user's (source) pro- 
gram is t ranslated into machine language. 
Then, the translated program is stored for 
immediate or future execution. Storing in.to 
main memory is called loading. In  modern 
systems the situation is more complex. In  

* Depar tment  of Electrical Engineering. This work 
was supported m part  by the Nat ional  Scmnce 
Foundat ion,  Grant  GJ-31949 

order to obtain flexibility and better  utiliza- 
tion of main memory,  t ranslators  are re- 
quired to generate relocatable code, tha t  is, 
code tha t  can be loaded into any  section of 
main memory  for execution Furthermore,  
the capabil i ty to combine subprograms into 
a composite program, referred to as linking, 
is of great value in modern operating sys- 
terns. 

This paper  is intended as a tutorial on 
linkers and loaders. For  a tutorial t rea tment  
of translators (e.g., compilers) the reader is 
referred to [1]. For  a tutorial t reatment  of 
operating systems the reader is referred to 
[2, 3]. 

2. LOADERS 

As previously stated, before a source pro- 
gram can be executed it must  first be trans-  
formed into machine language and then 
loaded into main memory,  if it is not al- 
ready there. Since the process of loading a 
translated program into memory  is logically 
distinct from the translat ion of tha t  pro- 
gram, separate software modules, called 
loaders [4], have been developed to accom- 

Computing Surveys, VoL 4, No 3, September 1972 



150 • Leon Presser and John R. Wh~te 

CONTENTS 

! Introductmn 149 
2. Loaders 149-151 

2 1 Binary Loaders 
2 2 Relocating Loaders 

3 Linkers 151-153 
4 The Linkage Editor 153-164 

4 1 Object Modules 
4 1 1 External Symbol Dlctmnary (ESD) 
4 1 2 Text 
4 l 3 Relocatmn Dlctmnary 
4 1 4 End Record 

4 2 Linking Together a Set of Modules 
4 2 1 Asmgmng Addresses 
4 2 2 Relocating Address Constants 
4 2 3 Creating an Output Load Module 

4 3 Load Modules 
4 4 Linking Example 
4 5 Linkage E&tor Control Statements 

4 5 1 Overlay Processing 
4 5 2 Program Modlficatmn 
4.5 3 Library Access 

4 6 Dmgnostles 
5. The Relocating Loader 164-165 

5 1 Requesting Main Memory 
5 2 Loading and Relocating the Text 
5 3 Loading Example 

6 Summary 165-166 
7 Acknowledgments 166-167 
References 167 

I ' ~  ~ r ~ ' - " - ' - ' 1  Machine Language 
Source , . , .~TRANSL.ATOR[~.o, ,¢ '¢  ~! LOADER l -P  .Pr°OrammMoln  
Program r I . . . . . . . . . . . . . .  ] . . . .  I . . . . .  ] - MemoryReody 

I I I I for Execuhon 

FI6 1. Basic language transformatmn process. 

plish the loading operation. There are two 
types of loaders: binary loaders, and relo- 
cating loaders. Each type of loader can be 
distinguished by the functions it performs 
and by the characteristics of the inputs that  
it processes. 

2.1 Binary Loaders 

A binary (or absolute) loader, the sim- 
plest type of loader, is responsible for load- 
ing into main memory a single program in 
absolute binary form. The absolute binary 
form of a program is simply a binary image 
of the program as it will exist in memory. A 
program in this form is associated with spe- 
cific memory locations; hence, it must al- 
ways be loaded into the same memory area 
if it is to execute correctly. 

Copyright © 1971, Association for Computing 
Machinery, Inc. General permismon to republish, 
but not for profit, all or part of this maternal is 
granted, provided that reference is made to this 
pubhcation, to its date of msue, and to the fact 
that reprinting privileges were granted by per- 
mission of the Association for Computing Ma- 
chinery. 

2.2 Relocating Loaders 

A program is said to be relocatable if it 
can be loaded into any section of main 
memory for execution.* The form of a relo- 
eatable program, referred to as relocatable 
binary, is similar to absolute binary except 
that :  1) address fields have been translated 
relative to zero; and 2) relocation informa- 
tion is associated with the program to be 
loaded to indicate which address fields must 
be relocated. There are two general ap- 
proaches that  have been employed to en- 
code relocation reformation. In the first ap- 
proach, the language translator (e g., com- 
piler, assembler) appends a relocation bit to 
each machine language instruction pro- 
duced. The relocation bit is set by the 
translator only if the address field of the 
corresponding instruction must be relocated. 

* It is m~presslve to note that John yon Neumann 
was writing relocatable code as earl)- as 1945 [5]. 

Computing Surveys, Vol 4, No 3, Septembez 1972 



Linkers and Loaders • 151 

In the second approach, all relocation infor- 
mation is grouped into a relocation table 
(dictionary) by the translator. The reloca- 
tion table contains a pointer to each mach- 
ine language instruction that  must have its 
address field relocated. 

I t  should be noted that  in most systems 
the total number of times an address field is 
relocated must be zero or one. The reason 
being that,  in the case of the relocation bit 
approach, the translator is only introducing 
one additional bit (two states) to indicate 
"relocation" or "no relocation." The restric- 
tion that  at most one relocation can be as- 
sociated with an address field could, if it 
were meaningful, be changed to "at most n 
relocations" by expanding the relocation bit 
from one bit to log2 (n + 1) bits. A similar 
reasoning applies in the case of a relocation 
table. 

The relocating loader is responsible for 
loading into main memory a program in re- 
locatable binary form and updating (relo- 
cating) all relative addresses. Note that  
when a relocating loader is used, the alloca- 
tion of memory to a given program will re- 
main bound (i.e., fixed) for the duration of 
that  program's execution. 

3. LINKERS 

The linking t of subprograms together to 
form a composite program is of great value 
in the modular development of software. To 
place the linking function in perspective, let 
us view Figure 1 as a function of time. 
Source program coding must be performed 
first, translation second, loading third, and 
execution fourth. Linking, however, could 
be carried out at seven different times, 
namely: 1) at source program coding time ; 
2) after coding but before translation time; 
3) at translation time; 4) after translation 
but before loading time; 5) at loading time; 
6) after loading but before execution time; 
or 7) at execution time. 

At this point it is worthwhile to introduce 
the concepts of physical and logical (vir- 

? The h n k m g  process has also been called binding 
(Burroughs),  collecting (UNIvac), and building 
( IBM 1800) 

tual, name) address space [6, 7]. The  physi- 
cal space consists of the set of main mem- 
ory locations where information may be 
stored. The logical space consists of the set 
of identifiers that  may be used by a pro- 
gram to reference information. The transla- 
tion or mapping of a logical into a physical 
address is called address binding. 

The linking process may be viewed as 
binding (combining) mdependent logical 
spaces into one composite logical space. In 
essence, the binding of a set of subprograms 
in logical space is equivalent to fixing their 
positions relative to a common base. Let  us 
now discuss the seven cases listed above in 
more detail. 

To link at or before translation time im- 
plies a separate translation for each differ- 
ent combination of subprograms. This rep- 
resents an important  drawback. The IBM 
1401 Autocoder is an example of a system 
that  performed linkage at translation time. 
The approach of linking after translation 
but before loading time is employed in the 
IBM System/360 (Linkage Editor) and the 
U~IVAC 9400. In the basic case (refer to 
Figure 2) the input to the linker conmsts of 
one or more subprograms in binary sym- 
bolic form. (These subprograms can come 
from secondary storage and/or  directly 
from translation.) This form is similar to 
relocatable binary except tha t  an additional 
table (dictionary) is included with each 
subprogram presented to the linker to indi- 
cate the definition and use of external sym- 
bols [8]. External symbols are symbols tha t  
are declared to be "public" and, as a result, 
can be referenced by other programs. Exter-  
nal symbols are the primary facility 
through which independently translated 
subprograms communicate. (External sym- 
bols are discussed in detail in section 4.1.1.) 
I t  is the responsibility of the linker to com- 
bine the input subprograms into a single 
(reloeatable) output module in which all 
external references have been resolved, if 
the module is to be loaded for execution. 
Carrying out the linking process after 
translation but before loading time (or 
later) allows the composition of a set of 
linked subprograms to change without fore- 
ing retranslation of the entire collection; 

Computm~: Survevs, Vol 4, No 3. Seotember 1972 



152 • Leon Presser a~d John R. White 

I Independently I (SECONDARY/' 
T, ansIa(ed \ '°'p:° I 

I One Refocatable 
I ~ IModule I ~ OneModule 
I - - - - - - . - - - ~ 1  LINKER I IComposed of I _ . o , , I o _ ~ 1  LOAOER I ,~ mMomMemory 
| .~I I | Independently I - - - I  I ~ Ready for 
I I ~1 I I Translated I I I Execuhon 
i I I Subprograms I 

Ilndependently I I 
ITranslated 
ISubprogrom 

FIG. 2. Linking after translation but before loading. 

only linking has to be performed anew. The 
output of the linker can be supplied to the 
loader for immediate loading or it can be 
stored in secondary memory for future link- 
ing and/or loading. This alternative pro- 
vides for a flexible system. Furthermore, the 
linker represents a natural base for the in- 
corporation of subprogram editing facilities. 

Linking could be performed at loading 
time (i e., linking loader) as in many exis- 
tent systems (e.g., Loader in IBM System/ 
360, XDS-UTS, CDC-SCOPE, and SEL 
810B-BOS). The popularity of linking 
loaders is a result of their simplicity since 
the loading stage is a natural place to brad 
subprograms together On the other hand, 
since linking implies loading, there is less 
flexibility than when the two functions are 
implemented as separate modules, as in the 
case earlier discussed. The input to a link- 
ing loader consists of one or more subpro- 
grams in binary symbolic form. The output 
consists of one module in main memory 
ready for execution. Again, all external ref- 
erences must be resolved before execution. 
Linking after loading but before execution 
(case 6) would only be logical if we could 
keep a very large number of subprograms 
resident in main memory. In today's sys- 
tems main memory is a scarce resource; 
thus, this alternative is not attractive. 

Finally, it is possible to link (bind) at 
execution time. Such an approach is called 
segmentation. A segment is a self-contained 
logical entity of related information defined 
and named by the programmer (e.g., sub- 
program, data array). All intersegment ref- 
erences are achieved through symbolic 

names that are resolved at execution time. 
The most general implemehtaton of this 
concept is that embodied in the Honeywell 
645 MULTICS system (formerly the GE- 
645). For an excellent discussion of segmen- 
tation as well as the MULTICS system the 
reader is referred to [7]. Briefly, from the 
linking point of view the principal advan- 
tages of segmentation include: the binding 
of segments to the composite logical space 
only when required; possible segment 
growth during execution since segmentation 
allows the management of logical space; 
and sharing (of segments) in its most gen- 
eral form since the relative position of a 
shared segment in one logical space is inde- 
pendent of its position in other logical 
spaces. The main problems with segmenta- 
tion include: overhead costs, since execution 
time binding is less efficient although more 
flexible than earlier binding; and the im- 
portance of an integrated (hardware and 
software) design. 

To treat linking and loading in more de- 
tail we discuss the implementation of these 
functions on the IBM System/360. The 
System/360 Operating System (OS) pro- 
vides two alternatives. On one hand there 
exists a linking loader referred to as 
Loader; on the other hand there exists a 
sophisticated hnker, called the Linkage 
Editor, and a simple relocating loader re- 
ferred to as Program Fetch. The linking 
power and flexibility of Loader is a subset 
of that provided by the Linkage Editor; so 
that only the function and structure of the 
Linkage Editor and Program Fetch are ex- 
amined in detail. The case in question is 

Computing Surveys, Vol. 4, No. 3, September 1972 



that outlined in Figure 2. There is an addi- 
tional facility (LINK) provided in the Sys- 
tem/360 OS which allows two separate logi- 
cal spaces to communicate at execution 
time through general registers. This will not 
be discussed here. The objective of the re- 
maining sections of this paper is to illus- 
trate basic implementation techniques and 
to point out system trade-offs. (Terms that 
refer to the IBM System/360 are capital- 
ized throughout.) 

4. THE LINKAGE EDITOR 

With this perspective of the Linkage Editor 
m mind, we can examine in more detail the 
functions ~t performs. The Linkage Editor 
is responsible for the following functions 
[9]: 
Primary function-- (1) Linking together in- 
dependently translated modules. 
Secondary functions--(2) Overlay process- 
ing; (3) Program modification; (4) Library 
a c c e s s .  

The first function listed above is the main 
rcsponsibihty of the Linkage Editor; there- 
fore, the bulk of this discussion centers on 
the manner in which independently trans- 
lated modules are hnked together. The 
other three functions represent secondary 
objectives and, as a result, are less thor- 
oughly considered. Before these functions 
are discussed further, the inputs to the 
Linkage Editor should be examined. 

The inputs accepted by the Linkage Edi- 
tor can be divided into two groups [10]: 
input modules, and Linkage Editor control 
statements. Input modules are further clas- 
sified as being either Object Modules or 
Load Modules. These two types of modules 
are sm~flar in structure Object Modules are 
discussed next, while the ~tructure of Load 
Modules is examined in Section 4.3. Link- 
age Editor control statements are covered 
in Section 4 5. 

4.1 Object Modules 

The term Object Module refers to the 
output produced by the (IBM System/360) 
language tram-lators This output consists 

Linkers and Loaders • 153 

of the machine language code for the trans- 
lated program, relocation reformation, and 
a table indicating the definition and use of 
external symbols. As a result, Object Mod- 
ules correspond to the binary symbolic form 
of a program that was discussed in Section 
3. Each module (see Figure 3) is divided 
into the following four sections [9]: Exter- 
nal Symbol Dictionary, Text, Relocation 
Dictionary, and End Record. 

4.1.1 External Symbol  Dictionary (ESD) 

The External Symbol Dictionary (ESD) 
is a table that contains an entry for each 
external symbol defined within the module 
[9]. As mentioned earher, external symbols 
are the facility by which independently 
translated programs communicate An ex- 
ternal symbol is classified as representing 
either an external name or an external re]- 
erence [11]. 

EXTERNAL SYMBOL DICTIONARY 
(ESD) 

TEXT 

RELOCATION DICTIONARY 
(RLD) 

END RECORD 

Fm 3 Objec t  M o d u l e  fo rmat  

Computing Storeys, Vol 4, No 3, September 1972 



154 • Leon Presser and John R. White 

External Name 

A symbol within a module is said to be 
an external name if that  symbol can be ref- 
erenced by other modules that  were inde- 
pendently translated and are being linked 
together with the module containing the ex- 
ternal name. Within the framework of the 
IBM System/360 there are two types of ex- 
ternal names: Control Section names, and 
En t ry  Point names [10]. 

Control Section Name 

A program in the System/360 is made up 
of one or more Control Sections. Each Con- 
trol Section is a unit of coding (instructions 
and/or  data) that  is considered to be an 
entity. While all elements of a single Con- 
trol Section are loaded and executed in a 
constant relationship with each other, an 
individual Control Section can be relocated 
independently of other Control Sections at 
load time without altering the operating 
logic of the program [ll] .  Note that  section- 
ing allows independently coded subpro- 
grams to be translated together, thus pro- 
ducing a single Object Module, whereas a 
linker allows independently translated pro- 
grams to be combined into a single Load 
Module. 

In the System/360 Assembly Language 
there are three pseudo-operations (instruc- 
tions to the Assembler) for identifying the 
beginning of a Control Section [11]: 
1) CSECT-- iden t i fy  Control Section; 
2) START-- iden t i fy  Control Section and 

specify initial location counter value; and 
3) COM--define Blank Common Control 

Section. 
A name can be associated with any of these 
pseudo-operations, and the corresponding 
Control Section is considered to be a named 
Control Section. The Control Section name, 
being external, can be referenced by other 
modules. An External Symbol Dict ionary 
entry is created by the Assembler for each 
Control Section. Note that  the beginning of 
unnamed Control Sections cannot be refer- 
enced by other modules since there is no 
external name associated with the Control 
Section. 

Entry Point Name 

Since a Control Section name is an exter- 
nal symbol, another independently trans- 
lated module can reference the beginning of 
any named Control Section. I t  is often de- 
sirable, however, to be able to reference a 
particular point within a Control Section. 
This can be accomplished by declaring the 
symbol to be an external name at the de- 
sired reference point. A symbol declared to 
be external for the above purpose is referred 
to as an En t ry  Point name In the System/  
360 Assembly Language the E N T R Y  pseu- 
do-operation is used to identify those labels 
which are to be considered Ent ry  Points 
[11]. The Assembler creates an ESD entry 
each time an E N T R Y  pseudo-operation is 
found. 

External Reference 

The term external reference refers to a 
symbol tha t  is defined as an external name 
in another independently translated module 
but is referred to in the current module [10]. 
To insure correct assembly the symbol 
being referenced must be identified as an 
external symbol. In the System/360 Assem- 
bly Language this is accomplished, in gen- 
eral, with either the E X T R N  pseudo-opera- 
tion or a V-type Address Constant. (Ad- 
dress Constants are discussed in Section 
4.1.3.) Either of these causes the Assembler 
to create an ESD entry for the external 
reference 

ESD Entries 

Each entry in the External Symbol Dic- 
t ionary has a type assigned to it tha t  indi- 
cates its function. There are six possible 
ESD types,  however, for purposes of this 
discussion it is sufficient to limit our atten- 
tion to the following five types [9] : 
1) Section Definition (SD). This ESD 

entry represents the beginning of a 
named Control Section. As shown in 
Figure 4(a) ,  the entry specifies the Con- 
trol Section name, the fact that  this entry 
represents a named Control Section, the 
assembled origin of the Control Section, 
and the length of the Control Section. 

Computing Surveys, Vol 4, No 3, September 1972 



2) Prwate Code (PC). This ESD entry 
represents the beginning of an unnamed 
Control Section. The format of the entry, 
as shown in Figure 4(b) ,  is similar to an 
SD type entry except th'at the Name field 
is blank Note that  since the Control Sec- 
tion is unnamed, the beginning of the 
Control Section cannot be referenced by 
other modules. 

3) Label Definition (LD).  This ESD entry 
represents an Ent ry  Point name. Figure 
4(c) shows that  the entry contains the 
name of the Ent ry  Point, the type, the 
address of the Ent ry  Point relative to the 
start  of the input module, and a pointer 
(called an ESD ID) to the ESD entry 
for the Control Section that  contains the 
Ent ry  Point. 

4) Common (CM). This ESD entry repre- 
sents a Common area and specifies the 
name and length of the area. (See Figure 
4(d).) The Assembled Origin field is un- 
defined since space for the Common area 
is not created during translation. One 
Common area in the output module will 
be allocated by the Linkage Editor;  thus, 
the value of this field is set at link time. 
The length of this area will equal the 
length of the largest Common area con- 
tained in the inputs. 

5) External Re]erence (ER). This type of 
ESD entry represents the occurrence of 
an external reference. As shown in Figure 
4(e),  the entry need only specify the 
referenced symbol and the fact that  the 
entry corresponds to an external refer- 
ence 

4 1 2 Text 

The Text  portion of an Object Module is 
straightforward I t  contains the relocatable 
machine language instructions and data 
that were produced during translation. 

4.1.3 Relocation Dictwnary 

The Relocation Dictionary (table) con- 
tams one entry for each address that  must 
be relocated when the module is loaded into 
mare memory. The number of relocatable 
addresses and, as a result, the amount of 

Linkers and Loaders • 

ICONT O" I IASS 'LEOI SECTION SD ORIGIN LENGTH 
NAME 

155 

I 

SLAN  ASSEM'LEOI I ORIGIN LENGTH 

[ POINTER TO ESD I 
ENTRY ASSEMBLED ENTRY FOR CSECT I 
POINT LD ORIGIN CONTAINING | 
NAME ENTRY POINT | 

I NAME OF 
COMMON CM LENGTH AREA(OR 
BLANK) 

I REFERENCED ERI sY. O, l- I 
FIG 4 F o r m a t  of  E S D  enh 'ws  (a)  Sect ion deft- 

n l t lon.  (b)  P r iva t e  code (c) Label  def imt lon  
(d) .  C o m m o n  area (e) Ex t e rna l  leference.  

information that  must be contained in a re- 
location table is a function of the machine 
(addressing) architecture. To illustrate this 
point consider for a moment a hypothetical 
computer with an addressing mechanism 
which functions such that  the effective ad- 
dress (i.e., the actual memory location that  
is accessed) is taken to be the contents of 
the memory address field of the instruction. 
With such an architecture, the address field 
of the machine language instructions will 
contain the effective address of the cell to 
be referenced. As a result, all the instruc- 
tions that reference memory must have 
their address fields modified when a pro- 
gram for this computer is relocated in mere- 

Computing Surveys, Vol 4, No 3, September 1972 



156 • Leon Presser and John R. White 

ory. Consequently, the relocation table is of 
maximum length. 

In the System/360, the size of the reloca- 
tion table is greatly reduced because the 
system architecture utilizes a base register 
approach m calculating the effective ad- 
dress. The effective address is formed by 
always adding the contents of a base regis- 
ter to the contents of the instruction mem- 
ory address field. (When indexing is speci- 
fied, the contents of an additional index 
register is added in when forming the effec- 
tive address.) Therefore, the address por- 
tion of machine language instructions that 
reference memory can be represented by the 
ordered pair: (Base Register, Displace- 
ment). The first element of the pair indi- 
cates which one of the 16 general-purpose 
registers is being used as a base register; 
the second element is a displacement (in 
bytes) from the address contained m the 
base register. The hardware calculates the 
effective memory address at execution time 
by adding the displacement field to the con- 
tents of the appropriate base register (and, 
if specified, the contents of another gener- 
al-purpose register, an index, is also added). 
I t  is the responsibility of the language 
translator to place the proper base register 
and displacement in the address portion of 
the machine language instructions being 
generated. In the System/360 Assembly 
Language, the USING pseudo-operation ex- 
ists to inform the Assembler: 1) which of 
the sixteen general registers is to be used as 
a base register, and 2) the relative address 
that will be in the base register at execution 
time [11] These two pieces of information 
enable the Assembler to correctly build the 
address portion of each memory reference 
instruction. When writing in 360 Assembly 
Language the programmer is responsible for 
including instructions in his program that 
at execution time will load the base regis- 
ters with the appropriate addresses. As a 
result of this organization, the address fields 
of machine language instructions in the 
System/360 do not have to be modified 
when a module is loaded. In effect, the nec- 
essary relocation occurs at execution time 
when the hardware adds the displacement 

to the contents of the base register to obtain 
the effective memory address. 

This discussion illustrates some impor- 
tant trade-offs that exist at system design 
time. On the one hand there is the trade-off 
between hardware and software as far as 
contributions to the relocation function are 
concerned (e.g., base registers). On the 
other hand there is the the trade-off be- 
tween various software modules. For exam- 
ple, the loader in the System/360 has 
shifted some of its responsibilities to the 
language translators which now have to 
output addresses in a base plus displace- 
ment format. Moreover, note that with a 
base register approach the binding of a 
memory address is not completed until the 
last possible moment---execution time. 

In the System/360 approach the only 
parts of the Text that require relocation are 
those entries that represent Address Con- 
stants. It  is sufficient for us to think of an 
Address Constant as simply a cell that will 
contain an absolute memory address at exe- 
cution time. Address Constants are used 
primarily for: 1) initializing base registers, 
and 2) communicating between Control 
Sections. 

In discussing Address Constants, we must 
distinguish between" 1) the cell (Text 
entry) that contains the constant, and 2) 
the value of the constant (Le., the contents 
of the cell). 

In tile 360 Assembly Language, Address 
Constants are normally established with a 
DC (Define Constant) pseudo-instruction. 
For example, 

JW DC A (LP) 

defines a cell labeled JW which at execution 
time will contain the actual memory ad- 
dress of the cell labeled LP. The Text entry 
that contains the Address Constant cannot 
be completed at translation time since the 
address of the symbol specified in the refer- 
ence field of the DC instruction will not be 
known until the corresponding module is 
loaded Therefore, Address Constants must 
be completed (relocated) by the loader. 

There are two principal kinds of Address 
Constants that require relocation: A-type 
and V-type [9]. 

Computing Surveys, Vo] 4, No 3, September 1972 



Linkers and Loaders • 157 

A-type Address Constants are defined 
with: 

DC A (SYMBOL) 

where SYMBOL is either 1) a name local to 
the module containing the DC pseudo, or 2) 
a name that  has been declared external by 
the use of the E X T R N  pseudo-instruction. 
In the first case, where the Address Con- 
stant represents a local reference, the As- 
sembler sets the value of the constant equal 
to the relative address of SYMBOL. In the 
second case, however, the value of the con- 
stant is set to zero since the Assembler has 
no knowledge of the relative address of the 
specified symbol. 

V-type Address Constants are defined 
with : 

DC V (SYMBOL) 

where SYMBOL is assumed to be an exter- 
nal reference. A-s in the second case above, 
the value of the constant is set to zero by 
the Assembler. 

Since Address Constants are the only 
part  of the Text  that  reqmre relocation, the 
Relocation Dict ionary contains an entry for 
each Address Constant in the program. The 
format of a Relocation Dict ionary (RLD) 
entry is shown in Figure 5. Each entry con- 
tains the following four fields [9]: 
1) Relocation Poznter (R). A pointer to the 

ESD entry for the external symbol on 
which the value of the Address Constant 
depends. I f  the Address Constant is an 
A-type that  does not depend on an exter- 
nal symbol, then the R pointer is set to 
point to the ESD entry for the Control 
Section which contains the Address Con- 
stant. 

2) Position Pointer (P).  A pointer to the 
ESD entry for the Control Section con- 
taining the Address Constant. 

3) Flag. A type indicator that, among other 
things, specifies whether the RLD entry 
represents an A-type or V-type Address 
Constant. 

4) Address. The displacement (in bytes) 
from the start  of the Text  to the Address 
Constant. 
The RLD entries are used by the relocat- 

ing loader to relocate the corresponding Ad- 

R P FLAG ADDRESS 

FiG 5. RLD entry format 

dress Constants when the module is loaded. 
This relocation occurs prior to execution 
and is referred to as static relocation since 
it remains fixed for the duration of program 
execution. As was pointed out earher, the 
address portion of memory reference in- 
structions is bound at execution time (dy- 
namic relocation) when the hardware adds 
the displacement field to the contents of the 
appropriate base register. Therefore, the 
running of a program in the System/360 
involves both static and dynamic reloca- 
tion. The software provided by IBM for the 
System/360 discards the Relocation Dic- 
t ionary after loading the module; so it is 
not possible to move a program to another 
place in memory once it has been loaded. 

I t  is interesting to note that with a some- 
what different system strategy, Address 
Constants are not needed. For example, if a 
single base register is used, and if the length 
(in bits) of the displacement field is suffi- 
cmnt to allow all of main memory to be 
accessed (e.g., in the System/360, 24 bits 
instead of 12--with implicit specification of 
the base registerS, then all memory refer- 
ences could be done with a base plus dis- 
placement format without the need for Ad- 
dress Constants. For  a local reference, the 
displacement field would be set by the 
translator;  but the displacement field of ex- 
ternal references would be set by the linker. 
This approach is essentially the one em- 
ployed in the CDC 6400. There are definite 
system trade-offs: 
1) In the single base register case, each in- 

struction tha t  references memory requires 
additional bits; however, once a program 
has been loaded it can be easily relocated 
in physical space at any time during exe- 
cution since there are no Address Con- 
stants. 

2) Multiple base registers under user con- 
trol require that  the user specify (e.g., 

Computing Surveys, Vol 4, No 3, September 1972 



158 • Leon Presser and John R. White 

USING) which base register is to be 
used. 

3) Multiple base registers facilitate the 
sharing of programs and allow the spht- 
ring of programs for loading into noncon- 
tiguous areas of main memory. 
In addition to the static relocation of Ad- 

dress Constants there are other features of 
the System/360 architecture that prevent 
the dynamic relocation of programs Among 
these are the fact that working registers can 
contain absolute addresses (e.g, return ad- 
dresses from Branch-And-Link instrue- 
tmns), and the fact that working and base 
registers are drawn from the same register 
set. 

4 1 4 End Record 

The End Record indicates to the Linkage 
Editor that the end of the Object Module 
has been reached. 

With the structure of Object Modules in 
mind (Figure 3), we can now discuss in more 
detail the priinary Linkage Editor function 
of hnking together one or more Ob)ect 
Modules. 

4.2 Linking Together a Set of Modules 

In linking together a set of modules, the 
Linkage Editor is primarily responsible for 
[9]: 1) assigning addresses; 2) relocating 
Address Constants; and 3) creating an out- 
put module (called a Load Module). 

4.2.1 Ass~gnt~g Addresses 

Each input Object Module may consist of 
one or more Control Seetmns To produce a 
single loadable module, the Linkage Editor 
assigns consecutive relative addresses to 
each Control Section encountered. This is 
done by asmgning an address of zero to the 
first Control Section and then assigning ad- 
dresses relative to this origin to all other 
Control Seetmns. During this process the 
External Symbol Dictionaries of the input 
modules are merged together to form a 
Composite External Symbol Dictionary 
(CESD). The Assembled Origin fields of all 
SD, PC, and LD type entries are updated 

to reflect the new addresses that were as- 
signed. 

4.2.2 Relocatmq Address Constants 

Once contiguous addresses have been as- 
signed to the Control Sections in the input 
modules, all A-type and V-type Address 
Constants must be relocated relative to the 
beginning of the output module being 
created. This relocation is accomplished in 
the following manner [9]: 
1) Every entry m the RLD for each indi- 

vidual input module is read. The R and P 
pointers are updated to point to the cor- 
rect CESD entry. The Address field is 
updated by adding to it the contents of 
the Assembled Origin field of the CESD 
entry pointed to by the new P pointer. 
The Flag field is examined to determine 
the type of Address Constant represented 
by the RLD entry. 

2) If the RLD entry represents a V-type 
Address Constant, then the constant cor- 
responds to an external reference. This 
means that the symbol referenced is not 
defined in the input module containing 
the Address Constant, but is defined (it is 
hoped) in one of the other input modules 
being linked together In the ESD of the 
input module the external reference is 
represented by an entry with Type set to 
ER. When the Composite External Sym- 
bol Dictionary is formed during the first 
step of linking, each ER type entry 
should be matched by an SD, LD, or CM 
type entry that has the same name field. 
External references that are matched in 
this way are said to be resolved since the 
referenced symbol corresponds to either a 
Control Section Name (SD type entry), 
an Entry Point Name (LD type entry), 
or a Common area (CM type entry). 
Only one entry (the SD, LD, or CM 
entry) is retained in the CESD. On the 
other hand, if there is no matching SD, 
LD, or CM entry, the ER entry is placed 
in the CESD and the external reference is 
said to be unresolved. Relocation of a V- 
type Addre~-s Constant is accomplished in 
the following manner. The constant is ac- 
cessed through the Address field of the 

Conlpu(lng Storeys, Vol 4, No 3, September 1972 



RLD entry. The R pointer is used to 
index the CESD to find the entry on 
which the value of the constant depends. 
If the Type field of the entry accessed is 
either SD, LD, or CM, the external refer- 
ence has been resolved; and relocation is 
effected by setting the value of the con- 
stant equal to the contents of the Assem- 
bled Origin field of the CESD entry. If, 
however, the Type field of the CESD 
entry is ER, the external reference is un- 
resolved and the module must be flagged 
as not executable 

3) If the RLD entry represents an A-type 
Address Constant, the constant can cor- 
respond to either a local reference or an 
external reference. If the Address Con- 
stant corresponds to a local reference 
(i.e., the symbol referenced is defined in 
the module containing the Address Con- 
stant), relocation is accomplished in the 
following manner. First, the cell contain- 
mg the constant is accessed through the 
Address field of the RLD entry. Then the 
value of the constant is updated (relo- 
cated) by adding to it the contents of the 
Assembled Origin field of the CESD 
entry pointed to by the R (relocation) 
pointer If the A-type Address Constant 
represents an external reference, the con- 
stant is again accessed through the Ad- 
dress field of the RLD entry. If the Type 
field of the CESD entry pointed to by the 
R pointer is ER, then the Address Con- 
stant corresponds to an unresolved exter- 
nal reference, and the module must be 
marked as not executable. On the other 
hand, if the Type field of the CESD 
entry is either SD, LD, or CM, the exter- 
nal reference has been resolved. Reloca- 
tion is then effected by adding to the 
value of the constant the Assembled Ori- 
gin field of the CESD entry. 

4.2 3 Creating an Output Load Module 

As a result of performing these two func- 
tions (assigning addresses and relocating 
Address Constants) the Linkage Editor 
produces a single output module that repre- 
sents a concatenation of the input modules 
processed. This output module is called a 
Load Module; its format is discussed below. 

L~nkers and Loaders • 159 

4.3 Load Modules 

As earher discussed, Load Modules can 
also appear as inputs to the Linkage Editor. 
The possible reprocessmg of a Load Module 
by the Linkage Editor requires that the 
structure of a Load Module be similar to 
that of an Object Module. The general for- 
mat of a Load Module is shown in Figure 6. 

The first portion of the Load Module 
contains the Composite External Symbol 
Dictionary. This table represents a combi- 
nation of the ESDs of the individual input 
modules, as has already been discussed. The 
CESD is followed by a sequence of Text 
and RLD information; each Text /RLD pair 
corresponds to the Text portion and Reloca- 

COMPOSITE EXTERNAL SYMBOL DICTIONARY 
(CESD) 

TEXT 

RLD 

TEXT 

RLD 

TEXT 

RLD 

EOM RECORD 

FIc 6. Load Module format 

Computing Surveys, Vol 4, No 3, September 1972 



160 • Leon Presser and John R. White 

tion Dictionary of an input module. The 
end of the Load Module is indicated by an 
EOM (End-Of-Module) record. 

At this pomt let us discuss an example in 
detail. 

4.4 Linking Example 

In this example two Object Modules, 
each containing one Control Section, are 
linked together to form one output Load 
Module. The format of the first module is 
shown in Figure 7. 

Object Module One has one named Con- 
trol Section (CSECT A), one Entry Point 
(the statement labeled BILL),  and one V- 
type Address Constant (DC V(B)) .  As 
shown in the External Symbol Dictionary, 
there are three external symbols: A (a Con- 
trol Section name), BILL (an Entry 

Point), and B (an external reference). 
There is one entry in the RLD for the sin- 
gle (relocatable) Address Constant present 
in Object Module One. The entry indicates 
that .the value of the constant depends on 
the address of the external symbol B and 
that the constant is defined in Control Sec- 
tion A at relative byte location 300. The 
value of the constant has been set to zero 
by the Assembler. 

The format of the second input module is 
shown in Figure 8. There are two entries in 
the External Symbol Dictionary, one for 
the Control Section name B and one for the 
external reference BILL. As indicated in 
the Relocation Dictionary, there are two 
Address Constants, DC A(JOE) which 
is a local reference, and DC V(BILL) 
which is an external reference. The R and P 
pointers m the RLD entry for the local ref- 
erence, DC A(JOE), are the same since 

BYTES 

50O 
BYTES 

NAME 

A 

BILL- 

B 

CSECT A 

ENTRY BILL 

8ILl 

OC V (B) O ~ 

ASSEMBLED 
TYPE ORIGIN LENGTH(OR ESD I0) 

SO 0 500  

LD 2 0 0  ! 

I ] V-type 3 0 0  
! 

P FLAG ADDRESS 
Fla. 7. Object Module One 

E 

S 

D 

T 

E 

X 

T 

VALUE OF THE 
CONSTANT SET BY 
THE ASSEMBLER 

Comput ing  Surveys, Vol. 4, No 3, Septembel 1972 



L i n k e r s  a~d  L o a d e r s  • 161 

B' 

300 
BYTES 

Ioo 
BYTE. ¢ 

2O0 
BYTES 

NAME TYPE 

BILL ER 

CSECT B 

ASSEMBLED 
ORIGIN LENGTH (OR ESO ID) 

0 I 300 

JOE - -  

DC 

DC 

A (JOE) 

V (BILL) 

lOOl., 
0 ~ 

A-type I 200 

V-type 204 
FLAG ADDRESS 

T 
E 
X 
T 

VALUE OF THESE 
CONSTANTSSETBY 
THE ASSEMBLER 

FIG. 8. Object Module Two 

the Address Constant is contained in Con- 
trol Section B, and the value of the con- 
stant depends on the address assigned to 
Control Section B. 

As said, it is the responsiblhty of the lan- 
guage translator (e.g., compiler, assembler) 
to create the Object Module in the format 
defined. Thus, Object Module One and Ob- 
ject Module Two would have been produced 
by two previous and independent transla- 
tion processes. 

Processing by the Linkage Editor yields 
one output Load Module, the format of 
which is shown m Figure 9. As indicated in 
the Assembled Origin field of the Composite 
External Symbol Dictionary, Control Sec- 
tion B had been assigned an address rela- 
tive to Control Section A. The R and P 

fields in the Relocation D]ctionaries have 
been updated to point to the correct CESD 
entries, and the Address fields have been 
changed to reflect the new addresses as- 
signed. The three Address Constants have 
been relocated relative to the start of the 
module, and the two constants that repre- 
sented external references have been re- 
solved. 

Having discussed the primary function of 
the Linkage Editor (linking together inde- 
pendently translated modules), and having 
also described one class of Linkage Editor 
inputs (input modules), let us now briefly 
discuss the secondary funchons of the Link- 
age Editor and the other class of Linkage 
Editor inputs (control statements). 

Computing Surveys, Vol 4, No, 3, September 1972 



162 • Leon Presser and John R. White 

I] l. i 
5 0 0  

BYTES 

6 0 0  
BYTES 

BY" 

7 0 4  
BYTES r 

1 

ASSEMBLED 
NAME TYPE ORIGIN 

,1 ol o 
I , 

B I S D I  500 300 
CSECT A 

ENTRY BILL 

BILL . . . . . . . . . . . . . . . . . . . . . . .  

OC V IB I  500  

V-type I 5OO 

CSECT B 

JOE . . . . . . . . . . . . . . . . . . . . . . . . .  

A (JOE) 600  

V (BILL) 200 

A-type 700  

V-type 704  

DC 

DC 

R P FLAG ADDRESS 

LENGTH (OR EGO ID) 

500  
C 

E 
S 
D 

TEXT OF OBJECT 
MODULE ONE 

RLD OF OBJECT 
MODULE ONE 

TEXT OF OBJECT 
MODULE TWO 

RLD OF OBJECT 
MODULE TWO 

FIG 9. Format of output Load Module 

4.5 Linkage Editor Control Statements 

In general, Linkage Editor  control state- 
ments modify or augment the processing 
performed by the Linkage Editor in its pri- 
mary function of linking modules. Control 
statements specify to the Linkage Editor 
which of the secondary functions (Overlay 
Processing, Program Modification, or Li- 
brary Access) are to be performed. To con- 
vey the flavor of what takes place, some 
key Linkage Editor control statements will 
be discussed as they relate to the appropri- 

ate secondary function. Since we are more 
interested in concepts than in details we 
will not concern ourselves with the syntax 
of control statements 

4 5 1 Overlay Processing 

The tendency in modern computer archi- 
tecture is toward systems with hardware- 
aided (mare) memory management (e.g., 
paging) [6]. As a result of these hardware 
facilities the software effort necessary to 
implement a dynamic (i.e., execution time) 



memory management scheme is sizeably re- 
duced. However, even though such memory 
management can proceed completely trans- 
parent to the programmer, it may be ineffi- 
cient without his cooperation. Other than 
base registers, the System/360 (except for 
models 67, 85, and 195) does not provide 
hardware features to perform dynamic 
memory management. Rather, the software 
incorporated into the operating system to 
manage memory is extensive and complex. 
The Linkage Editor through a facility re- 
ferred to as Overlay allows a programmer 
the option of specifying certain dynamic 
memory management. In essence, the pro- 
grammer points out to the Linkage Editor, 
via control statements, those Control Sec- 
tions in his program that  need not reside in 
mare memory at the same time. Based on 
this information the Linkage Editor struc- 
tures the module it outputs so that  at exe- 
cution time an Overlay Supervisor (part  of 
the operating system) will be able to over- 
lay Control Sections. 

Overlay Struct~re 

A program in overlay form consists of a 
set of Segments, each of which is composed 
of one or more Control Sections [10]. The 
overlay structure of a program can be rep- 
resented by a tree, as the example in Figure 
10 indicates. The Root Segment (Segment 
1) contains all Control Sections that  must 
remain m main memory throughout execu- 
tion of the program. Segments that  lie in a 
path are logically related; when control is 
passed to a Segment, all Segments in the 
path between the Root and the Segment in 
question are loaded into main memory if 
not already there For example, when con- 
trol is passed to Segment 4, the Overlay 
Supervisor must insure that  both Segment 4 
and Segment 2 are in main memory. Seg- 
ments that  lie on the same level are not 
logically related and, thus, can overlay each 
other (e.g., Segments 2 and 3 in Figure 10). 

Once the programmer has designed the 
overlay structure of his program, he must 
indicate that  structure to the Linkage Edi- 
tor,  this is aceomphshed with the Overlay 
Linkage Editor control statement. Each 

Linkers and Loaders • 163 

I CSECT A I ROOT SEGMENT 
CSECT B (SEGMENT I) 

SEGMENT 4. SEGMENT S 

FIG 10 
form 

SEGMENT 3 

Example  of an Overlay Structure  m tree 

Overlay statement specffies 1) a set of Con- 
trol Sections that  are to be grouped into a 
Segment, and 2) the relationship of tha t  
segment to other Segments. The Linkage 
Editor structures this information for the 
Overlay Supervisor. In fact, this informa- 
tion becomes part  of the Linkage Editor 
output module; the module is termed an 
Overlay Load Module. 

4.5.2 Program Modzfication 

During Linkage Editor processing the 
user can edit (thus the name Linkage Edi- 
tor) his input modules on a Control Section 
basis. This makes it possible to modify a 
Control Section m an Object or Load Mod- 
ule without retranslatmg the entire source 
program [10] Two Linkage Editor control 
statements that  facihtate program modifi- 
cation are Replace and Change. 

The Replace control statement is em- 
ployed to specify one of the following: 
1) the replacement of one Control Section 

with another ; 
2) the deletion of a Control Section; or 
3) the deletion of an Ent ry  Point name. 

The Change control statement allows the 
programmer to change an external symbol. 
The symbol to be changed can be a Control 

Computing Sulveys, Vol. 4, No 3, September 1972 



164 • Leon Presser and John R. While 

Section name, an En t ry  Point  name, or an 
external reference. 

~.5.3 Library Access 

I t  is possible for the Linkage Editor to 
obtain input modules from sources other 
than its pr imary input. The Linkage Editor 
incorporates such modules either automati-  
cally or upon request [10] 

Automatw L~brary Call 

If, after  linking together a set of modules, 
the Linkage Editor detects any unre- 
solved external references, it automatically 
searches a specified l ibrary-- the  Call L1- 
b r a r y - - m  an at tempt  to resolve these exter- 
nal references All such references must be 
resolved before a Load Module can be exe- 
cuted. The Call Library (e g., FOaTRAN li- 
brary} is specified through a job control 
language statement. With the Library 
Linkage Editor control statement It is pos- 
sible to : 
1) instruct the Linkage Echtor to search a 

library other than the Call Library for 
the resolutmn of specific unresolved ex- 
ternal references. The control statement 
indicates both the library and the spe- 
cific external references that  are to be 
resoh'ed by a search of that  library. 

2) indicate those unresolved external refer- 
ences for which no search of the Call 
Library is to be performed during thas 
run of the Linkage Editor. 

These facilities allow a programmer to 
translate, link, and cheek out his code be- 
fore ~t is complete The ineoml)lete module 
may contain references to modules that  will 
be incorporated at a later time 

Requested Library Call 

The Linkage Editor control s t a t emen t /n -  
claude allows a user to request that  a specific 
module (from some specified file) be in- 
cluded in the Load Module being produced. 

4.6 Diagnostics 

As previously discussed, the principal 
output of the Linkage Editor is a Load 

Module which is placed m a file specffied 
through the job control language. In addi- 
tion, the Linkage Editor  outputs diagnostic 
information which is also placed in a file 
specified through the job control language. 
The diagnostic reformation consists of three 
parts. The first part,  which is always out- 
put, indicates options (e.g., overlay) and 
attributes (e.g., re-entrant) valid for tile 
Load Module, as well as messages describ- 
ing the.' handling of the Load Module (e.g., 
Module Has Become Not Executable).  The 
second par t  of the diagnostic information, 
which may or may not exist, consists of 
error/warning messages. The third part  
contains additional diagnostic informatmn 
requested at the user's option. This optional 
output includes a listing of all Linkage Edi- 
tor control statements, a module map of the 
Load Module (indicating such facts as the 
origm and length of each Control Section in 
the Load Module, the point of defimtion of 
each Ent ry  Point  name In each Control 
Sectmn, those Control Sections obtained 
from Automatic Library Call, etc.), and a 
cross-reference table (hsting the cross-ref- 
erences between the Control Sections in the 
Load Module).  

5. THE RELOCATING LOADER 

The relocating loader, a pomon  of the Con- 
trol Program that  is always resident in 
main memory, is funetmnally much simpler 
than the Linkage Editor. Basically, with a 
single Load Module as input, the functions 
of the relocating loader are to acquire suffi- 
cient space in main memory for the Load 
Module, to load the module into mam mem- 
ory, and to update (relocate) all Address 
Constants m the module. 

5.1 Requesting Main Memory 

The relocating loader requests from the 
Control Program the mare memory neces- 
sary to load the module [12]. If  the Control 
Program cannot satisfy the storage request, 
either 1) the program that  called the loader 
is terminated, or 2) an operation (called 
Rollm#) is initiated in which the Control 

CompuNng Surveys, Vol 4, No 3, September 1972 



Program must find another job in the sys- 
tem (i e., a program in memory other than 
the one that  has just requested main stor- 
age) and write all the memory allocated to 
that job (its Regzon) onto secondary stor- 
age. The space occupied by the rolled out 
job is then made available to the requesting 
program 

Once the request for memory is satisfied, 
the appropriate amount of main storage is 
allocated. This storage will be used to hold 
the Text  of the module being loaded 

5.2 Loading and Relocating the Text 

For each T e x t / R L D  pair in the Load 
Module (see Figure 6) the following actions 
are performed [12]. 
1) The Text  is read into the next available 

section of the memory allocated. 
2) The R LD (Relocation Dictionary) is 

read into a buffer in the relocating 
loader's work area. 

3l Each Address Constant in the Text  just 
loaded ~s updated m the following man- 
net. The cell that  represents the cor- 
responding Address Constant IS accessed 
from the Address field (a pointer) in the 
RLD entry;  the starting Text  address is 
then added to the contents of the Address 
Constant. 

These steps are repeated until an End-Of- 
Module (EOM) indleatmn is found. At that  
point, the Load Module is m main menmry 
ready for execution. 

5.3 Loading Example 

At this t/olnt, the program associated 
with the Load Module in the prewous ex- 
ample (Figure 9) is loaded into main mem- 
ory The relocating loader starts by re- 
questing 800 bytes of main memory from 
the Control Program (the amount of stor- 
age reqmred by the Load Module) Assume 
that  the request is satisfied and that  the 
storage allocated starts at absolute address 
2000 (Figure 11 (a)) The relocating loader 
then reads the first section of Text (CSECT 
A) into memory, starting at location 2000 
The RLD for this Text  is read into the 

L ~ k e r s  and Loaders • 165 

loader's work area, and the Address Con- 
stant in CSECT A is updated (relocated) 
by adding the sl, artmg Text  address (2000) 
to the value of the constant (Figure 
11 (b)) .  The Text  for CSECT B is then read 
into the next available section of memory 
l location 2500), and the two Address Con- 
stants are relocated (Figure 11 (el) .  

I t  should be noted that  the relocating 
loader does not reference the Composite Ex- 
ternal Symbol Dict ionary of the module 
being loaded As mentmned earlier, the 
CESDs are retained to allow the reproeess- 
ing of Load Modules by the Linkage Edi- 
tor. Actually, for purposes of relocation it is 
only the address field of the RLD entries 
that is of interest. 

Thus, in essence, the reloeatable binary 
form of a program m the IBM System/360 
consists of the Text  and RLD portions of 
the Load Module. As previously described, 
when a program ~s loaded into memory, the 
relocation information (RLD) employed to 
load (relocate) it is discarded Therefore, a 
program that  has been rolled out to second- 
ary storage cannot be brought back into 
main memory (Rollin operation) until the 
~paee that  it previously occupied is made 
available; this represents a serious disad- 
vantage. (Other reasons that  require a 
rolled out program to be returned--rolled in 
- - t o  the exact space from which it was re- 
moved are mentioned in Section 4 1.3 ) 

6. SUMMARY 

In this paper we have discussed the hnkmg 
and loading functions, and the implementa- 
tion of linkers and relocating loaders. In so 
doing, we have placed m perspective the 
fact that  the language processing responsi- 
bility of an operating system extends be- 
yond translation (e g,  compilation), and 
that  the translators are strongly influenced 
by the environment in which they function. 
A number of possible system trade-offs have 
been pointed out. For example, in the Sys- 
tem/360 (software and hardware) architec- 
ture the work of the relocating loader is 
rather simple since: machine addressing 
follows the base plus displacement form; 

Computing Sul~eys, Vol 4, No 3 Septembe~ 1972 



166 • Leon Presser and John R. White 

MEMORY 
LOCATION 

2000  

MEMORY 
LOCATION 

2 0 0 0  

2 2 0 0  

2300  

2500  

MEMORY 
LOCATION 

2000  

2 2 0 0  

2500  
S 

2500  

2600  

CSECT A 
ENTRY BILL 

BILL . . . . . . . . . . . . . . . . . . . . . . . . . .  

DC V(B) 2500 

5~ 
BY 

2700  

2704  

I CSECT A 
ENTRY BILL 

81[L . . . . . . . . . . . . . . . . . . . . . . .  

DC V IB) 2500 

CSECT B 

d~E . . . . . . . . . . . . . . . . . . . . . . . . . .  

DC AIJOE) 2600 

DC V (BILL) 2 2 0 0  

m 300 
BYTE. c 

FzG 11 Loading a module (a). Storage allocated by Control  Program (b). 
loaded and relocated (c). Module in memory ready for exectmon. 

500 
BYTES 

3OO 
BYTES 

First section of Text 

the linking together of independently trans- 
lated programs is the responsibility of the 
Linkage Editor;  and a major par t  of the 
language processing burden is on the lan- 
guage translators whose responsibility is 
not only to translate source programs Into a 
form which is very close to machine lan- 
guage, but  also to format  addresses in a 
base plus displacement form and to create 
the Object Module. 

Another important  trade-off involves 
binding time [2]. I f  the various stages of the 
language transformation process are viewed 
as a function of time, it is generally true 
that  early binding allows more efficient im- 
plementations, while late binding facilitates 
program debugging and modification. 

The high cost of such features as elabo- 
rate editing capabilities and overlay proc- 
essing, which produce a powerful and so- 
phisticated linker like IBM's  Linkage Edi- 

tor, presents a question of practicali ty in a 
great many computer center environments. 
This point is substantiated by the existence 
of IBM's  simple loader which supposedly 
reduces editing and loading time by about 
one half [10]. 

In conclusion, it is our opinion that  the 
flexibility provided by simple linkers and 
relocating loaders has a definite place in 
modern operating sy:~tems. 

7. ACKNOWLEDGMENTS 

We wish to make it clear that  our descrip- 
tion of the IBM System/360 modules is 
based on the manuals listed in the refer- 
ences, as well as on our experience with the 
system. The information presented here is 
correct to the best of our knowledge. 

We are grateful to the reviewers and to 

Comput ing  Surveys, Vol 4, No 3, September  1972 



L i ~ k e r s  a ~ d  Loader s  • 167 

Ed Balkovich, Willy Chiu, Don Dumont, 
Rex Kerley, Dick Mandell, ~nd Ed Pn- 
chard for many helpful comments. 

REFERENCES 

1 PRESSER, L "The han~la tmn of programming 
languages"  In Computer sczey~ce, CaRDENaS, 
PRESSER, AND M-',RIN ( E d s ) ,  John  Wiley & 
Son~, New York, 1972 

2 BRADEX, R "Operating ~ystems " In Computer 
sczence, CARDENAS, PRESSER, aND MARIN ( E d s ) ,  
John  W t l e y &  Sons, New York, 1972. 

3 BARRON. D. W Computer operating systems 
Chapman and Hall. London, 1971 

4 BCRRo~, D W. Assemblers and loaders Amer-  
ican Elsewer, New Ymk. 1969 

5 KNUTH, D E "Von Neumann ' s  first computer  
program " Computzng Smveys 2, 4 (Dec 1970), 
247-260 

6 DEN:,'I.~G. P J "Virtual  memory " Computing 
Smveys 2, 3 (Sept. 1970), 153-189 

7 WATSON, R. W Tzme-sharing system des~q~t 
cot~cepts. McGraw-Hill,  New Ymk,  1970 

8 McCARTHY. J . ,  CORBATO, F J ; AND DAGGE'I'T, 
M M "The hnkmg segment subprogram 
language and hnkmg loader"  Comm. ACM 6, 
7 (July 1963), 391-395 

9 IBM System/360 operahng svsem hnkage edl° 
tor program logic manual I B M  Form No 
Y28-6667-0 

10 I B M System/360 operating system hnkage 
editor and loader IBM Form No C28-6538-8 

11 I B M  System/a60 operating system assembler 
language I B M  Form No C28-6514-5. 

12 I BM System/360 operating system M V T  su- 
pervisor program logic manual I B M  Form 
No GY28-6659-4 

Coml)utmg Storeys, Vol 4, No 3, September 1972 


