
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 1

What is an Operating System?

January 23, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 1.21/23/08 Joseph CS162 ©UCB Spring 2008

Who am I?

• Professor Anthony D. Joseph
– 465 Soda Hall (RAD Lab)

– adj AT cs.berkeley.edu

– Office hours M 1pm/Tu 2pm in 413 Soda

• Background:
– MIT undergrad and grad student

• Research areas:
– Current: Network security, OS security, building a
large security testbed, attacks against machine
learning algorithms

– Other: Mobile computing, wireless networking,
cellular telephony

Lec 1.31/23/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• What is an Operating System?
– And – what is it not?

• Examples of Operating Systems design

• Why study Operating Systems?

• Oh, and “How does this class operate?”

Interactive is important!

Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Slides courtesy of Kubiatowicz, AJ Shankar, George Necula,
Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar,
and David Wagner.

Lec 1.41/23/08 Joseph CS162 ©UCB Spring 2008

Rapid Underlying Technology Change

• “Cramming More Components onto Integrated Circuits”
– Gordon Moore, Electronics, 1965

Page 2

Lec 1.51/23/08 Joseph CS162 ©UCB Spring 2008

Computing Devices Everywhere

Lec 1.61/23/08 Joseph CS162 ©UCB Spring 2008

Computer System Organization

• Computer-system operation
– One or more CPUs, device controllers connect
through common bus providing access to shared
memory

– Concurrent execution of CPUs and devices
competing for memory cycles

Lec 1.71/23/08 Joseph CS162 ©UCB Spring 2008

People-to-Computer Ratio Over Time

From David Culler

Lec 1.81/23/08 Joseph CS162 ©UCB Spring 2008

Increasing Software Complexity

From MIT’s 6.033 course

Page 3

Lec 1.91/23/08 Joseph CS162 ©UCB Spring 2008

But, Latency Improves Slowly…

From MIT’s 6.033 course

Lec 1.101/23/08 Joseph CS162 ©UCB Spring 2008

Heat is a Major Problem!

From MIT’s 6.033 course

Lec 1.111/23/08 Joseph CS162 ©UCB Spring 2008

• How to manage complexity at all levels?

• Many issues and many tradeoffs

• Need a global view of systems
– Decompose into components

• Need a global understanding of systems
– Applications, networks, databases, operating
systems, security, software engineering…

Complexity

Lec 1.121/23/08 Joseph CS162 ©UCB Spring 2008

Example: Some Mars Rover Requirements

• Serious hardware limitations/complexity:
– 20Mhz powerPC processor, 128MB of RAM
– cameras, scientific instruments, batteries,

solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!
– Must reboot itself if necessary
– Always able to receive commands from Earth

• Individual Programs must not interfere
– Suppose the MUT (Martian Universal Translator Module)

buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally
– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:
– Need to stop before hitting something
– Must track orbit of Earth for communication

Page 4

Lec 1.131/23/08 Joseph CS162 ©UCB Spring 2008

How do we tame complexity?

• Every piece of computer hardware different
– Different CPU

» Pentium, PowerPC, ColdFire, ARM, MIPS

– Different amounts of memory, disk, …
– Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint
readers

– Different networking environment
» Cable, DSL, Wireless, Firewalls,…

• Questions:
– Does the programmer need to write a single program
that performs many independent activities?

– Does every program have to be altered for every
piece of hardware?

– Does a faulty program crash everything?
– Does every program have access to all hardware?

Lec 1.141/23/08 Joseph CS162 ©UCB Spring 2008

OS Tool: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks 

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):
– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 1.151/23/08 Joseph CS162 ©UCB Spring 2008

Interfaces Provide Important Boundaries

• Why do interfaces look the way that they do?
– History, Functionality, Stupidity, Bugs, Management

– CS152  Machine interface

– CS160  Human interface

– CS169  Software engineering/management

• Should responsibilities be pushed across boundaries?
– RISC architectures, Graphical Pipeline Architectures

instruction set

software

hardware

Lec 1.161/23/08 Joseph CS162 ©UCB Spring 2008

Course Administration

• Instructor: Anthony D. Joseph (adj@cs)
465 Soda Hall (RAD Lab)
Office Hours (TBA): 413 Soda Hall

• TAs: Barret Rhoden (cs162-tj@cory)
Manu Srivastava (cs162-tk@cory)
Man-Kit Leung (cs162-tl@cory)

• Labs: Second floor of Soda Hall (poll)

• Website: http://inst.eecs.berkeley.edu/~cs162

• Webcast/Podcast (3-day delay):
http://webcast.berkeley.edu/courses/index.php

• Newsgroup: ucb.class.cs162 (use authnews.berkeley.edu)

• Course Email: cs162@cory

• Reader: Available from TBA

• Are you on the waitlist? See Michael-David in 379 Soda

http://inst.eecs.berkeley.edu/~cs162
http://inst.eecs.berkeley.edu/~cs162
http://webcast.berkeley.edu/courses/index.php

Page 5

Lec 1.171/23/08 Joseph CS162 ©UCB Spring 2008

Class Schedule

• Class Time: M/W 4 – 5:30pm, 277 Cory

– Please come to class. Lecture notes do not have everything
in them. The best part of class is the interaction!

• Sections:

– Important information is in the sections

– The sections assigned to you by Telebears are temporary!

– Every member of a project group must be in same section

Section Time Location TA

101 Th 10:00-11:00A 45 Evans Barret

102 Th 11:00-12:00P 85 Evans Barret

103 Th 4:00-5:00P 3102 Etcheverry Man-Kit

104 F 2:00-3:00P 310 Soda Manu

105 F 3:00-4:00p 405 Soda Manu

Lec 1.181/23/08 Joseph CS162 ©UCB Spring 2008

Textbook

• Text: Operating Systems Concepts,
7th Edition Silbershatz, Galvin, Gagne

• Online supplements

– See “Information” link on course website

– Includes Appendices, sample problems, etc

• Question: need 7th edition?

– No, but has new material that we may cover

– Completely reorganized

– Will try to give readings from both the 6th and 7th

editions on the lecture page

Lec 1.191/23/08 Joseph CS162 ©UCB Spring 2008

Topic Coverage

Textbook: Silberschatz, Galvin, and Gagne,
Operating Systems Concepts, 7th Ed., 2005

• 1 week: Fundamentals (Operating Systems Structures)

• 1.5 weeks: Process Control and Threads

• 2.5 weeks: Synchronization and scheduling

• 2 week: Protection, Address translation, Caching

• 1 week: Demand Paging

• 1 week: File Systems

• 2.5 weeks: Networking and Distributed Systems

• 1 week: Protection and Security

• 1 week: Software Engineering

• ??: Advanced topics

Lec 1.201/23/08 Joseph CS162 ©UCB Spring 2008

Grading

• Rough Grade Breakdown
– Two Midterms: 15% each
One Final: 15%
Four Projects: 50% (i.e. 12.5% each)
Participation: 5%

• Four Projects:
– Phase I: Build a thread system
– Phase II: Implement Multithreading
– Phase III: Caching and Virtual Memory
– Phase IV: Parallel and Distributed Systems

• Late Policy:
– Each group has 5 “slip” days.
– For Projects, slip days deducted from all partners
– 10% off per day after slip days exhausted

Page 6

Lec 1.211/23/08 Joseph CS162 ©UCB Spring 2008

Group Project Simulates Industrial Environment

• Project teams have 4 or 5 members in same
discussion section
– Must work in groups in “the real world”

• Communicate with colleagues (team members)
– Communication problems are natural

– What have you done?

– What answers you need from others?

– You must document your work!!!

– Everyone must keep an on-line notebook

• Communicate with supervisor (TAs)
– How is the team’s plan?

– Short progress reports are required:
» What is the team’s game plan?

» What is each member’s responsibility?
Lec 1.221/23/08 Joseph CS162 ©UCB Spring 2008

Typical Lecture Format

• 1-Minute Review

• 20-Minute Lecture

• 5- Minute Administrative Matters

• 25-Minute Lecture

• 5-Minute Break (water, stretch)

• 25-Minute Lecture

• Instructor will come to class early & stay after to answer
questions

Attention

Time

20 min. Break “In Conclusion, ...”25 min. Break 25 min.

Lec 1.231/23/08 Joseph CS162 ©UCB Spring 2008

Lecture Goal

Interactive!!!

Lec 1.241/23/08 Joseph CS162 ©UCB Spring 2008

Computing Facilities

• Every student who is enrolled should get an
account form at end of lecture
– Gives you an account of form cs162-xx@cory
– This account is required

» Most of your debugging can be done on other EECS
accounts, however…

» All of the final runs must be done on your cs162-xx
account and must run on the x86 Solaris machines

• Make sure to log into your new account this week
and fill out the questions

• Project Information:
– See the “Projects and Nachos” link off the course
home page

• Newsgroup (ucb.class.cs162):
– Read this regularly!

Page 7

Lec 1.251/23/08 Joseph CS162 ©UCB Spring 2008

Academic Dishonesty Policy

• Copying all or part of another person's work, or using reference
material not specifically allowed, are forms of cheating and will
not be tolerated. A student involved in an incident of cheating will
be notified by the instructor and the following policy will apply:

http://www.eecs.berkeley.edu/Policies/acad.dis.shtml
• The instructor may take actions such as:

– require repetition of the subject work,
– assign an F grade or a 'zero' grade to the subject work,
– for serious offenses, assign an F grade for the course.

• The instructor must inform the student and the Department Chair
in writing of the incident, the action taken, if any, and the
student's right to appeal to the Chair of the Department
Grievance Committee or to the Director of the Office of Student
Conduct.

• The Office of Student Conduct may choose to conduct a formal
hearing on the incident and to assess a penalty for misconduct.

• The Department will recommend that students involved in a second
incident of cheating be dismissed from the University.

Lec 1.261/23/08 Joseph CS162 ©UCB Spring 2008

Virtual Machines

• Software emulation of an abstract machine
– Make it look like hardware has features you want
– Programs from one hardware & OS on another one

• Programming simplicity
– Each process thinks it has all memory/CPU time
– Each process thinks it owns all devices
– Different Devices appear to have same interface
– Device Interfaces more powerful than raw hardware

» Bitmapped display  windowing system
» Ethernet card  reliable, ordered, networking (TCP/IP)

• Fault Isolation
– Processes unable to directly impact other processes
– Bugs cannot crash whole machine

• Protection and Portability
– Java interface safe and stable across many platforms

Lec 1.271/23/08 Joseph CS162 ©UCB Spring 2008

Four Components of a Computer System

Definition: An operating system implements a virtual
machine that is (hopefully) easier and safer to
program and use than the raw hardware.

Lec 1.281/23/08 Joseph CS162 ©UCB Spring 2008

Virtual Machines (con’t): Layers of OSs

• Useful for OS development
– When OS crashes, restricted to one VM

– Can aid testing programs on other OSs

http://www.eecs.berkeley.edu/Policies/acad.dis.shtml
http://www.eecs.berkeley.edu/Policies/acad.dis.shtml

Page 8

Lec 1.291/23/08 Joseph CS162 ©UCB Spring 2008

Nachos: Virtual OS Environment

• You will be working with Nachos
– Simulation environment

– Hardware, interrupts, I/O

– Execution of User Programs running on this platform

Lec 1.301/23/08 Joseph CS162 ©UCB Spring 2008

What does an Operating System do?

• Silerschatz and Gavin:
“An OS is Similar to a government”

– Begs the question: does a government do anything useful by
itself?

• Coordinator and Traffic Cop:

– Manages all resources

– Settles conflicting requests for resources

– Prevent errors and improper use of the computer

• Facilitator:

– Provides facilities that everyone needs

– Standard Libraries, Windowing systems

– Make application programming easier, faster, less error-prone

• Some features reflect both tasks:

– E.g. File system is needed by everyone (Facilitator)

– But File system must be Protected (Traffic Cop)

Lec 1.311/23/08 Joseph CS162 ©UCB Spring 2008

What is an Operating System,… Really?

• Most Likely:
– Memory Management

– I/O Management

– CPU Scheduling

– Communications? (Does Email belong in OS?)

– Multitasking/multiprogramming?

• What about?
– File System?

– Multimedia Support?

– User Interface?

– Internet Browser? 

• Is this only interesting to Academics??

Lec 1.321/23/08 Joseph CS162 ©UCB Spring 2008

Operating System Definition (Cont.)

• No universally accepted definition

• “Everything a vendor ships when you order an
operating system” is good approximation
– But varies wildly

• “The one program running at all times on the
computer” is the kernel.
– Everything else is either a system program (ships
with the operating system) or an application
program

Page 9

Lec 1.331/23/08 Joseph CS162 ©UCB Spring 2008

What if we didn’t have an Operating System?

• Source CodeCompilerObject CodeHardware

• How do you get object code onto the hardware?

• How do you print out the answer?

• Once upon a time, had to Toggle in program in
binary and read out answer from LED’s!

Altair 8080
Lec 1.341/23/08 Joseph CS162 ©UCB Spring 2008

Simple OS: What if only one application?

• Examples:
– Very early computers

– Early PCs

– Embedded controllers (elevators, cars, etc)

• OS becomes just a library of standard services
– Standard device drivers

– Interrupt handlers

– Math libraries

Lec 1.351/23/08 Joseph CS162 ©UCB Spring 2008

MS-DOS Layer Structure

Lec 1.361/23/08 Joseph CS162 ©UCB Spring 2008

More thoughts on Simple OS

• What about Cell-phones, Xboxes, etc?
– Is this organization enough?

• Can OS be encoded in ROM/Flash ROM?

• Does OS have to be software?

– Can it be Hardware?

– Custom Chip with predefined behavior

– Are these even OSs?

Page 10

Lec 1.371/23/08 Joseph CS162 ©UCB Spring 2008

More complex OS: Multiple Apps

• Full Coordination and Protection
– Manage interactions between different users

– Multiple programs running simultaneously

– Multiplex and protect Hardware Resources
» CPU, Memory, I/O devices like disks, printers, etc

• Facilitator
– Still provides Standard libraries, facilities

• Would this complexity make sense if there were
only one application that you cared about?

Lec 1.381/23/08 Joseph CS162 ©UCB Spring 2008

Example: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS

– Keep User Programs from Crashing each other

– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation

– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 1.391/23/08 Joseph CS162 ©UCB Spring 2008

CPU MMU

Virtual
Addresses

Physical
Addresses

Address Translation

• Address Space
– A group of memory addresses usable by something

– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:

– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Lec 1.401/23/08 Joseph CS162 ©UCB Spring 2008

Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Page 11

Lec 1.411/23/08 Joseph CS162 ©UCB Spring 2008

Address Translation Details

• For now, assume translation happens with table
(called a Page Table):

• Translation helps protection:
– Control translations, control access
– Should Users be able to change Page Table???

Virtual
Address

Page Table

index
into
page
table

V
Access
Rights PA

V page no. offset
10

table located
in physical
memory

P page no. offset

10

Physical
Address

Lec 1.421/23/08 Joseph CS162 ©UCB Spring 2008

Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)

– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify  Exception generated

• Transitions from user mode to kernel mode:
– System Calls, Interrupts, Other exceptions

Lec 1.431/23/08 Joseph CS162 ©UCB Spring 2008

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 1.441/23/08 Joseph CS162 ©UCB Spring 2008

OS Systems Principles

• OS as illusionist:
– Make hardware limitations go away
– Provide illusion of dedicated machine with infinite
memory and infinite processors

• OS as government:
– Protect users from each other
– Allocate resources efficiently and fairly

• OS as complex system:
– Constant tension between simplicity and
functionality or performance

• OS as history teacher
– Learn from past
– Adapt as hardware tradeoffs change

Page 12

Lec 1.451/23/08 Joseph CS162 ©UCB Spring 2008

Why Study Operating Systems?

• Learn how to build complex systems:
– How can you manage complexity for future projects?

• Engineering issues:
– Why is the web so slow sometimes? Can you fix it?
– What features should be in the next mars Rover?
– How do large distributed systems work? (Kazaa, etc)

• Buying and using a personal computer:
– Why different PCs with same CPU behave differently
– How to choose a processor (Opteron, Itanium, Celeron,
Pentium, Hexium)? [Ok, made last one up]

– Should you get Windows XP, Vista, Linux, Mac OS …?
– Why does Microsoft have such a bad name?

• Business issues:
– Should your division buy thin-clients vs PC?

• Security, viruses, and worms
– What exposure do you have to worry about?

Lec 1.461/23/08 Joseph CS162 ©UCB Spring 2008

“In conclusion…”

• Operating systems provide a virtual machine
abstraction to handle diverse hardware

• Operating systems coordinate resources and
protect users from each other

• Operating systems simplify application
development by providing standard services

• Operating systems can provide an array of fault
containment, fault tolerance, and fault recovery

• CS162 combines things from many other areas of
computer science –
– Languages, data bases, data structures, hardware,
networking, security, distributed systems, and
algorithms

