CS162
Operating Systems and
Systems Programming
Lecture 2

Concurrency:
Processes, Threads, and Address Spaces

January 28, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Example: Protecting Processes from Each Other

* Problem: Run multiple applications in such a way

that they are protected from one another

- Goal:

- Keep User Programs from Crashing OS
- Keep User Programs from Crashing each other
- [Keep Parts of OS from crashing other parts?]

+ (Some of the required) Mechanisms:

- Address Translation
- Dual Mode Operation

+ Simple Policy:

1/28/08

- Programs are not allowed to read/write memory of
other Programs or of Operating System

Joseph C5162 ©UCB Spring 2008 Lec 2.3

Page 1

Review: Virtual Machine Abstraction

Application

Virtual Machine Interface

Operating System

Physical Machine Interface
Hardware

- Software Engineering Problem:

- Turn hardware/software quirks =
what programmers want/need

- Optimize for convenience, utilization, security,
reliability, etc...

* For Anl OS area (e.g. file systems, virtual memory,
networking, scheduling):

- What's the hardware interface? (physical reality)

- What's the application interface? (nicer abstraction)
1/28/08

Joseph CS5162 ©UCB Spring 2008 Lec2.2

Example: Address Translation
+ Address Space

- A group of memory addresses usable by something

- Each program (process) and kernel has potentially
different address spaces.

+ Address Translation:

- Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

- Mapping often performed in Hardware by Memory
Management Unit (MMU)

Virtual

Physical
Addresses Addresses

1/28/08 Joseph C5162 ©UCB Spring 2008 Lec 2.4

Example: Example of Address Translation

Code Data 2 Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Vsl ata 1 Vs
Address Heap 2 Address
Space 1 Code 2 Space 2
/ OS code \
Translation Map 1 OSdata | Translation Map 2
0S heap &
Stacks

Physical Address Space
Jos

1/28/08 eph CS162 ©UCB Spring 2008 Lec 2.5

Goals for Today

* How do we provide multiprogramming?
- What are Processes?

* How are they related to Threads and Address
Spaces?

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
1/28/08 Joseph €5162 ©UCB Spring 2008 Lec 2.7

Page 2

Example: Dual Mode Operation

* Hardware provides at least two modes:
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode: Normal programs executed
+ Some instructions/ops prohibited in user mode:
- Example: cannot modify page tables in user mode
» Attempt to modify = Exception generated
* Transitions from user mode to kernel mode:
- System Calls, Interrupts, Other exceptions

user process
user mode
‘ user process executing H calls system call ‘ ‘ return from system call ‘ (mode bit = 1)
\ 7
A A
LY y 4
‘ormal trap return
eno mode bit = 0 mode bit = 1
kernel mode
1/28/08 Joseph CS5162 ©UCB Spring 2008 Lec 2.6
Concurrency

*+ "Thread” of execution
- Independent Fetch/Decode/Execute loop
- Operating in some Address space
* Uniprogramming: one thread at a time
- MS/DOS, early Macintosh, Batch processing
- Easier for operating system builder
- Get rid concurrency by defining it away
- Does this make sense for personal computers?
* Multiprogramming: more than one thread at a time

- Multics, UNIX/Linux, 0S/2, Windows NT/2000/XP,
Mac 0OS X

- Often called "multitasking”, but multitasking has
other meanings (talk about this later)

1/28/08 Joseph C5162 ©UCB Spring 2008 Lec 2.8

The Basic Problem of Concurrency

* The basic problem of concurrency involves resources:
- Hardware: single CPU, single DRAM, single I/O devices

- Multiprogramming API: users think they have exclusive
access to machine

+ OS Has to coordinate all activity

- Multiple users, I/0 interrupts, ..

- How can it keep all these things straight?
+ Basic Idea: Use Virtual Machine abstraction

- Decompose hard problem into simpler ones

- Abstract the notion of an executing program

- Then, worry about multiplexing these abstract machines
- Dijkstra did this for the "THE system"”

- Few thousand lines vs 1 million lines in OS 360 (1K bugs)

1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.9

How can we give the illusion of multiple processors?

l I I CPU1 CPU2 CPU3 | CPU1 CPU2

Time ———

* How do we provide the illusion of multiple processors?
- Multiplex in timel
- Each virtual "CPU” needs a structure to hold:
- Program Counter (PC), Stack Pointer (SP)
- Registers (Integer, Floating point, others..?)
+ How switch from one CPU to the next?
- Save PC, SP, and registers in current state block
- Load PC, SP, and registers from new state block
* What triggers switch?

- Timer, voluntary yield, I/O, other things

1/28/08 Joseph C5162 ©UCB Spring 2008 Lec 2.11

Page 3

Recall (61C): What happens during execution?

Addr 232-1

. Execution sequence:
- Fetch Instruction at PC
- Decode
- Execute (possibly using registers)
- Write results to registers/mem
- PC = Next Instruction(PC)

- Repeat
1/28/0 Joseph CS5162 ©UCB Spring 2008

Addr O

Lec 2.10

Properties of this simple multiprogramming technique

+ All virtual CPUs share same non-CPU resources
- I/0 devices the same
- Memory the same

- Consequence of sharing:

- Each thread can access the data of every other
thread (good for sharing, bad for protection)

- Threads can share instructions
(good for sharing, bad for protection)

- Can threads overwrite OS functions?
* This (unprotected) model common in:
- Embedded applications
- Windows 3.1/Machintosh (switch only with yield)
- Windows 95—ME? (switch with both yield and timer)

Lec 2.12

1/28/08 Joseph CS162 ®UCB Spring 2008

Modern Technique: SMT/Hyperthreading

+ Hardware technique

- Exploit natural properties
of 'superscalar processors
to Pr‘ovide illusion of
multiple processors — —

B

6) multiprocessor B) Hyper-
architecture Threading

a) superscalar
architecture

- Higher utilization of
processor resources

+ Can schedule each thread
as if were separate CPU

- However, not linear

Time (CPU cycles)

speedupl! _ L
- If have multiprocessor,
should schedule each Threado mThread 1

processor first
+ Original technique called "Simultaneous Multithreading”
- See http://www.cs.washington.edu/research/smt/
- Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.13

Administriva: Almost Time for Project Signup

+ Project Signup: Use “Group/Section Assignment Link"

- 4-5 members to a group
» Everyone in group must be able to actually attend same section
» The sections assigned to you by Telebears are temporary!

- Only submit once per group!
» Everyone in group must have logged into their cs162-xx

accounts once before you register the group

» Make sure that you select at least 2 potential sections
» Due date: Thursday (1/31) by 11:59pm

+ Sections:
- 6o to desired section this week (Thurs/Fri)
Section Time Location TA
101 Th 10:00-11:00A 45 Evans Barret
102 Th 11:00-12:00P 85 Evans Barret
103 Th 4:00-5:00P 3102 Etcheverry |Man-Kit
104 F 2:00-3:00P 310 Soda Manu
105 F 3:00-4:00p 405 Soda Manu
1/28/08 Joseph CS162 ®UCB Spring 2008 Lec 2.15

Page 4

Administrivia

+ ¢cs162-xx accounts:
- Make sure you got an account form
» We have more forms for those of you who didn't get one

- If you haven't logged in and registered yet, you need
to do so now

+ Nachos readers:
- TBA: Will be down at Copy Central on Hearst
- Will include lectures and printouts of all of the code
+ Video/Audio archives available off lectures page
- Just click on the title of a lecture for webcast
- Three-day delay on Webcasts and Podcasts
* No slip days on first design document for each phase
- Need to get design reviews in on time
+ Don't know Java well?
- Talk CS 96 self-paced Java course

1/28/08 Joseph CS5162 ©UCB Spring 2008 Lec 2.14

How to protect threads from one another?

* Need three important things:
1. Protection of memory
» Every task does not have access to all memory
2. Protection of I/0 devices
» Every task does not have access to every device
3. Preemptive switching from task to task
» Use of timer

» Must not be possible to disable timer from
usercode

1/28/08 Joseph C5162 ©UCB Spring 2008 Lec 2.16

1/28/08

Recall: Program's Address Space

+ Address space = the set of

accessible addresses + state m
associated with them:

- For a 32-bit processor there are

o
b~

stack

232 = 4 billion addresses

+ What happens when you read or
write to an address?

- Perhaps Nothing t
- Perhaps acts like regular memory heap
- Perhaps ignores writes data

2o0dg ssaJppy wpubouy

- Perhaps causes I/O operation

» (Memory-mapped I/0) text

o

- Perhaps causes exception (fault)

Joseph CS162 ©UCB Spring 2008 Lec 2.17

1/28/08

Traditional UNIX Process

* Process: Operating system abstraction to
represent what is needed to run a single program
- Often called a "HeavyWeight Process”
- Formally: a single, sequential stream of execution
in its own address space
* Two parts:
- Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers
- Protected Resources:
» Main Memory State (contents of Address Space)
» I/0 state (i.e. file descriptors)
* Important: There is no concurrency in a
heavyweight process

Joseph C5162 ©UCB Spring 2008 Lec 2.19

Page 5

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Code Data 2
Data Stack 1
Heap Heap 1
Stack Code 1
Stack 2
Prog 1
Virtual Data 1
Address Heap 2
Space 1 Codo 2
/ OS code \
Translation Map 1 0S data
0S heap &
Stacks

Phlsical Address Space
J

1/28/08 eph C5162 ©UCB Spring 2008

Code

Data

Heap

Stack

Prog 2
Virtual
Address
Space 2

Translation Map 2

Lec 2.18

How do we multiplex processes?

- The current state of process held in a
process control block (PCB):

- This is a “snapshot” of the execution and
protection environment

- Only one PCB active at a time
+ Give out CPU time to different
processes (Scheduling):
- Only one process “running” at a time
- Give more time to important processes
- Give pieces of resources to different
processes (Protection):
- Controlled access to non-CPU resources
- Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

1/28/08 Joseph CS162 ®UCB Spring 2008

process state

process number

program counter

registers

memory limits

list of open files

Process
Control
Block

Lec 2.20

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

axecuting J
save state into PCB, }
4 idle
reload state from PCB,|

Idle interrupt or system call exacuting

}
b idle

reload state from bEBT]
lexecuting \ -

+ This is also called a “context switch”
- Code executed in kernel above is overhead
- Overhead sets minimum practical switching time

- Less overhead with SMT/hyperthreading, but...

contention for resources instead
1/28/08 Joseph CS162 ©UCB Spring 2008 Lec2.21

Process Scheduling

: ready queue CcPU
/O queue H 1/O request }-—

time slice
expired

child fork a

child
interrupt wait for an
occurs interrupt

+ PCBs move from queue to queue as they change state

- Decisions about which order to remove from queues are
Scheduling decisions

- Many algorithms possible (few weeks from now)

-

1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.23

Page 6

Diagram of Process State

admitted interrupt exit

terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

waiting

* As a process executes, it changes state
-new: The process is being created
-ready: The process is waiting to run
-running: Instructions are being executed
- waiting: Process waiting for some event to occur

- terminated: The process has finished execution
1/28/08 Joseph CS5162 ©UCB Spring 2008 Lec 2.22

What does it take to create a process?

* Must construct new PCB
- Inexpensive

* Must set up new page tables for address space
- More expensive

+ Copy data from parent process? (Unix fork ())

- Semantics of Unix fork () are that the child
process gets a complete copy of the parent
memory and I/0 state

- Originally very expensive

- Much less expensive with “"copy on write”
+ Copy I/0 state (file handles, etc)

- Medium expense

1/28/08 Joseph CS162 ®UCB Spring 2008 Lec 2.24

Process =? Program

main () main () Heap
{ {
} } Stack
A { A0 { A
main
} Program } Process

*+ More to a process than just a program:
- Program is just part of the process state
- I run emacs on lectures.txt, you run it on
homework. java - Same program, different processes
- Less to a process than a program:
- A program can invoke more than one process

- cc starts up cpp, ccl, cc2, as, and |d

1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.25

Shared Memory Communication

Code Data 2 Code

Data itack 11 Data

Heap edp Heap

Stack Code 1 Stack
Shared Stack 2 | Shared
Prog 1 Prog 2

Virtual Virtual
Address Address
Space 1 Space 2

+ Communication occurs by “simply” reading/writing
to shared address page

- Really low overhead communication

- Introduces complex synchronization problems

1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.27

Page 7

Multiple Processes Collaborate on a Task

Proc 1 (::> Proc 2 (::> Proc 3

+ High Creation/memory Overhead
+ (Relatively) High Context-Switch Overhead
+ Need Communication mechanism:
- Separate Address Spaces Isolates Processes
- Shared-Memory Mapping

» Accomplished by mapping addresses to common DRAM
» Read and Write through memory
- Message Passing
» send() and receive() messages
» Works across network

1/28/08 Joseph CS5162 ©UCB Spring 2008 Lec 2.26

BREAK

Inter-process Communication (IPC)

* Mechanism for processes to communicate and to
synchronize their actions

* Message system - processes communicate with
each other without resorting to shared variables

+ IPC facility provides two operations:
- send (message) - message size fixed or variable
—recelive (message)

+ If Pand Q wish to communicate, they need to:
- establish a communication link between them
- exchange messages via send/receive

+ Implementation of communication link

- physical (e.g., shared memory, hardware bus,
systcall/trap)

- logical (e.g., logical properties)
1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.29

Single and Multithreaded Processes

| code || data H files

I code H data ” files

T T
registers ||| registers ||| registers
stack stack stack

thread — é ; ; ;-—-— thread

multithreaded process

Ireglalersl I stack }

single-threaded process

*+ Threads encapsulate concurrency: "Active” component

+ Address spaces encapsulate protection: “Passive” part
- Keeps buggy program from trashing the system

+ Why have multiple threads per address space?

1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.31

Page 8

Modern “Lightweight” Process with Threads

* Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

- Process still contains a single Address Space
- No protection between threads

* Multithreading: a single program made up of a
number of different concurrent activities

- Sometimes called multitasking, as in Ada...

* Why separate the concept of a thread from that of
a process?

- Discuss the "thread” part of a process (concurrency)
- Separate from the “address space” (Protection)
- Heavyweight Process = Process with one thread

1/28/08 Joseph CS5162 ©UCB Spring 2008 Lec 2.30

Examples of multithreaded programs

- Embedded systems
- Elevators, Planes, Medical systems, Wristwatches
- Single Program, concurrent operations

+ Most modern OS kernels

- Internally concurrent because have to deal with
concurrent requests by multiple users

- But no protection needed within kernel

+ Database Servers
- Access to shared data by many concurrent users
- Also background utility processing must be done

1/28/08 Joseph C5162 ©UCB Spring 2008 Lec 2.32

Examples of multithreaded programs (con't)

* Network Servers
- Concurrent requests from network
- Again, single program, multiple concurrent operations
- File server, Web server, and airline reservation
systems
* Parallel Programming (More than one physical CPV)
- Split program into multiple threads for parallelism

- This is called Multiprocessing

- Some multiprocessors are actually uniprogrammed:
- Multiple threads in one address space but one program

at a time
1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.33
Execution Stack Example
A: =1
A(int tmp) { ::i=exit
if 2
i (tmp<2) B: ret=A+2
B();
printf (tmp) ; C: ret=b+1
} A: tmp=2
B({ Stack _ ret=C+1
cQO; Pointer 1
} Stack Growth
cO {
- Stack holds temporary results
A(2); R . .
} + Permits recursive execution
AL ; * Crucial to modern languages
1/28/08 Joseph CS162 ©UCB Spring 2008 Lec 2.35

Page 9

Thread State

+ State shared by all threads in process/addr space
- Contents of memory (global variables, heap)
- I/0 state (file system, network connections, etc)
+ State “private” to each thread
- Kept in TCB = Thread Control Block
- CPU registers (including, program counter)
- Execution stack - what is this?

+ Execution Stack
- Parameters, Temporary variables
- return PCs are kept while called procedures are
executing

Lec 2.34

1/28/08 Joseph CS5162 ©UCB Spring 2008

Classification

5w

Lk
threads 5 & e Ny
Per AS: #*

MS/DOS, early
e Macintosh

Embedded systems
(Geoworks, VxWorks,
Many Java0s,etc)

Java0s, Pilot(PC)

* Real operating systems have either
- One or many address spaces
- One or many threads per address space
- Did Windows 95/98/ME have real memory protection?

- No: Users could overwrite process tables/System DLLs
Lec 2.36

Traditional UNIX

Mach, 0S/2, Linux
Windows 9x???

Win NT to XP,
Solaris, HP-UX, OS X

1/28/08 Joseph C5162 ©UCB Spring 2008

Example: Implementation Java OS

* Many threads, one Address Space
+ Why another OS?
- Recommended Minimum memory sizes:
» UNIX + X Windows: 32MB
» Windows 98: 16-32MB
» Windows NT: 32-64MB
» Windows 2000/XP: 64-128MB
- What if we want a cheap network
point -of -sale computer?
» Say need 1000 terminals
» Want < 8MB

+ What language to write this OS in?
- C/C++/ASM? Not terribly high-level.
Hard to debug.
- Java/Lisp? Not quite sufficient - need

direct access to HW/memory management
1/28/08 Joseph CS162 ©UCB Spring 2008

Java OS
Structure

Java APPS

Lec 2.37

Page 10

Summary

* Processes have two parts
- Threads (Concurrency)
- Address Spaces (Protection)
+ Concurrency accomplished by multiplexing CPU Time:
- Unloading current thread (PC, registers)
- Loading new thread (PC, registers)

- Such context switching may be voluntary (yield(),
I/0 operations) or involuntary (timer, other interrupts)

* Protection accomplished restricting access:
- Memory mapping isolates processes from each other
- Dual-mode for isolating I/0, other resources

+ Book talks about processes

- When this concerns concurrency, really talking about
thread portion of a process

- When this concerns protection, talking about address
space portion of a process
Joseph CS5162 ©UCB Spring 2008

1/28/08 Lec 2.38

