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Example: Protecting Processes from Each Other

* Problem: Run multiple applications in such a way

that they are protected from one another

- Goal:

- Keep User Programs from Crashing OS
- Keep User Programs from Crashing each other
- [Keep Parts of OS from crashing other parts?]

+ (Some of the required) Mechanisms:

- Address Translation
- Dual Mode Operation

+ Simple Policy:
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- Programs are not allowed to read/write memory of
other Programs or of Operating System
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Review: Virtual Machine Abstraction

Application

Virtual Machine Interface

Operating System

Physical Machine Interface
Hardware

- Software Engineering Problem:

- Turn hardware/software quirks =
what programmers want/need

- Optimize for convenience, utilization, security,
reliability, etc...

* For Anl OS area (e.g. file systems, virtual memory,
networking, scheduling):

- What's the hardware interface? (physical reality)

- What's the application interface? (nicer abstraction)
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Example: Address Translation
+ Address Space

- A group of memory addresses usable by something

- Each program (process) and kernel has potentially
different address spaces.

+ Address Translation:

- Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

- Mapping often performed in Hardware by Memory
Management Unit (MMU)

Virtual

Physical
Addresses Addresses
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Example: Example of Address Translation

Code Data 2 Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Vsl ata 1 Vs
Address Heap 2 Address
Space 1 Code 2 Space 2
/ OS code \
Translation Map 1 OSdata |  Translation Map 2
0S heap &
Stacks

Physical Address Space
Jos
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Goals for Today

* How do we provide multiprogramming?
- What are Processes?

* How are they related to Threads and Address
Spaces?

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
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Example: Dual Mode Operation

* Hardware provides at least two modes:
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode: Normal programs executed
+ Some instructions/ops prohibited in user mode:
- Example: cannot modify page tables in user mode
» Attempt to modify = Exception generated
* Transitions from user mode to kernel mode:
- System Calls, Interrupts, Other exceptions

user process
user mode
‘ user process executing H calls system call ‘ ‘ return from system call ‘ (mode bit = 1)
\ 7
A A
LY y 4
‘ormal trap return
eno mode bit = 0 mode bit = 1
kernel mode
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Concurrency

*+ "Thread” of execution
- Independent Fetch/Decode/Execute loop
- Operating in some Address space
* Uniprogramming: one thread at a time
- MS/DOS, early Macintosh, Batch processing
- Easier for operating system builder
- Get rid concurrency by defining it away
- Does this make sense for personal computers?
* Multiprogramming: more than one thread at a time

- Multics, UNIX/Linux, 0S/2, Windows NT/2000/XP,
Mac 0OS X

- Often called "multitasking”, but multitasking has
other meanings (talk about this later)
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The Basic Problem of Concurrency

* The basic problem of concurrency involves resources:
- Hardware: single CPU, single DRAM, single I/O devices

- Multiprogramming API: users think they have exclusive
access to machine

+ OS Has to coordinate all activity

- Multiple users, I/0 interrupts, ..

- How can it keep all these things straight?
+ Basic Idea: Use Virtual Machine abstraction

- Decompose hard problem into simpler ones

- Abstract the notion of an executing program

- Then, worry about multiplexing these abstract machines
- Dijkstra did this for the "THE system"”

- Few thousand lines vs 1 million lines in OS 360 (1K bugs)
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How can we give the illusion of multiple processors?

l I I CPU1 CPU2 CPU3 | CPU1 CPU2

Time ———

* How do we provide the illusion of multiple processors?
- Multiplex in timel
- Each virtual "CPU” needs a structure to hold:
- Program Counter (PC), Stack Pointer (SP)
- Registers (Integer, Floating point, others..?)
+ How switch from one CPU to the next?
- Save PC, SP, and registers in current state block
- Load PC, SP, and registers from new state block
* What triggers switch?

- Timer, voluntary yield, I/O, other things
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Recall (61C): What happens during execution?

Addr 232-1

. Execution sequence:
- Fetch Instruction at PC
- Decode
- Execute (possibly using registers)
- Write results to registers/mem
- PC = Next Instruction(PC)

- Repeat
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Properties of this simple multiprogramming technique

+ All virtual CPUs share same non-CPU resources
- I/0 devices the same
- Memory the same

- Consequence of sharing:

- Each thread can access the data of every other
thread (good for sharing, bad for protection)

- Threads can share instructions
(good for sharing, bad for protection)

- Can threads overwrite OS functions?
* This (unprotected) model common in:
- Embedded applications
- Windows 3.1/Machintosh (switch only with yield)
- Windows 95—ME? (switch with both yield and timer)
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Modern Technique: SMT/Hyperthreading

+ Hardware technique

- Exploit natural properties
of 'superscalar processors
to Pr‘ovide illusion of
multiple processors — —

B

6) multiprocessor B) Hyper-
architecture Threading

a) superscalar
architecture

- Higher utilization of
processor resources

+ Can schedule each thread
as if were separate CPU

- However, not linear

Time (CPU cycles)

speedupl! _ L
- If have multiprocessor,
should schedule each Threado  mThread 1

processor first
+ Original technique called "Simultaneous Multithreading”
- See http://www.cs.washington.edu/research/smt/
- Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5
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Administriva: Almost Time for Project Signup

+ Project Signup: Use “Group/Section Assignment Link"

- 4-5 members to a group
» Everyone in group must be able to actually attend same section
» The sections assigned to you by Telebears are temporary!

- Only submit once per group!
» Everyone in group must have logged into their cs162-xx

accounts once before you register the group

» Make sure that you select at least 2 potential sections
» Due date: Thursday (1/31) by 11:59pm

+ Sections:
- 6o to desired section this week (Thurs/Fri)
Section Time Location TA
101 Th 10:00-11:00A 45 Evans Barret
102 Th 11:00-12:00P 85 Evans Barret
103 Th 4:00-5:00P 3102 Etcheverry |Man-Kit
104 F 2:00-3:00P 310 Soda Manu
105 F 3:00-4:00p 405 Soda Manu
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Administrivia

+ ¢cs162-xx accounts:
- Make sure you got an account form
» We have more forms for those of you who didn't get one

- If you haven't logged in and registered yet, you need
to do so now

+ Nachos readers:
- TBA: Will be down at Copy Central on Hearst
- Will include lectures and printouts of all of the code
+ Video/Audio archives available off lectures page
- Just click on the title of a lecture for webcast
- Three-day delay on Webcasts and Podcasts
* No slip days on first design document for each phase
- Need to get design reviews in on time
+ Don't know Java well?
- Talk CS 96 self-paced Java course
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How to protect threads from one another?

* Need three important things:
1. Protection of memory
» Every task does not have access to all memory
2. Protection of I/0 devices
» Every task does not have access to every device
3. Preemptive switching from task to task
» Use of timer

» Must not be possible to disable timer from
usercode
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Recall: Program's Address Space

+ Address space = the set of

accessible addresses + state m
associated with them:

- For a 32-bit processor there are

o
b~

stack

232 = 4 billion addresses

+ What happens when you read or
write to an address?

- Perhaps Nothing t
- Perhaps acts like regular memory heap
- Perhaps ignores writes data

2o0dg ssaJppy wpubouy

- Perhaps causes I/O operation

» (Memory-mapped I/0) text

o

- Perhaps causes exception (fault)
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Traditional UNIX Process

* Process: Operating system abstraction to
represent what is needed to run a single program
- Often called a "HeavyWeight Process”
- Formally: a single, sequential stream of execution
in its own address space
* Two parts:
- Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers
- Protected Resources:
» Main Memory State (contents of Address Space)
» I/0 state (i.e. file descriptors)
* Important: There is no concurrency in a
heavyweight process
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Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Code Data 2
Data Stack 1
Heap Heap 1
Stack Code 1
Stack 2
Prog 1
Virtual Data 1
Address Heap 2
Space 1 Codo 2
/ OS code \
Translation Map 1 0S data
0S heap &
Stacks

Phlsical Address Space
J
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Code

Data

Heap

Stack

Prog 2
Virtual
Address
Space 2

Translation Map 2
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How do we multiplex processes?

- The current state of process held in a
process control block (PCB):

- This is a “snapshot” of the execution and
protection environment

- Only one PCB active at a time
+ Give out CPU time to different
processes (Scheduling):
- Only one process “running” at a time
- Give more time to important processes
- Give pieces of resources to different
processes (Protection):
- Controlled access to non-CPU resources
- Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

1/28/08 Joseph CS162 ®UCB Spring 2008

process state

process number

program counter

registers

memory limits

list of open files

Process
Control
Block
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CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

axecuting J
save state into PCB, }
4 idle
reload state from PCB,|

Idle interrupt or system call exacuting

}
b idle

reload state from bEBT]
lexecuting \ -

+ This is also called a “context switch”
- Code executed in kernel above is overhead
- Overhead sets minimum practical switching time

- Less overhead with SMT/hyperthreading, but...

contention for resources instead
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Process Scheduling

: ready queue CcPU
/O queue H 1/O request }-—

time slice
expired

child fork a

child
interrupt wait for an
occurs interrupt

+ PCBs move from queue to queue as they change state

- Decisions about which order to remove from queues are
Scheduling decisions

- Many algorithms possible (few weeks from now)

-
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Diagram of Process State

admitted interrupt exit

terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

waiting

* As a process executes, it changes state
-new: The process is being created
-ready: The process is waiting to run
-running: Instructions are being executed
- waiting: Process waiting for some event to occur

- terminated: The process has finished execution
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What does it take to create a process?

* Must construct new PCB
- Inexpensive

* Must set up new page tables for address space
- More expensive

+ Copy data from parent process? (Unix fork () )

- Semantics of Unix fork () are that the child
process gets a complete copy of the parent
memory and I/0 state

- Originally very expensive

- Much less expensive with “"copy on write”
+ Copy I/0 state (file handles, etc)

- Medium expense

1/28/08 Joseph CS162 ®UCB Spring 2008 Lec 2.24




Process =? Program

main () main () Heap
{ {
} } Stack
A { A0 { A
main
} Program } Process

*+ More to a process than just a program:
- Program is just part of the process state
- I run emacs on lectures.txt, you run it on
homework. java - Same program, different processes
- Less to a process than a program:
- A program can invoke more than one process

- cc starts up cpp, ccl, cc2, as, and |d
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Shared Memory Communication

Code Data 2 Code

Data itack 11 Data

Heap edp Heap

Stack Code 1 Stack
Shared Stack 2 | Shared
Prog 1 Prog 2

Virtual Virtual
Address Address
Space 1 Space 2

+ Communication occurs by “simply” reading/writing
to shared address page

- Really low overhead communication

- Introduces complex synchronization problems
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Multiple Processes Collaborate on a Task

Proc 1 (::> Proc 2 (::> Proc 3

+ High Creation/memory Overhead
+ (Relatively) High Context-Switch Overhead
+ Need Communication mechanism:
- Separate Address Spaces Isolates Processes
- Shared-Memory Mapping

» Accomplished by mapping addresses to common DRAM
» Read and Write through memory
- Message Passing
» send() and receive() messages
» Works across network
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Inter-process Communication (IPC)

* Mechanism for processes to communicate and to
synchronize their actions

* Message system - processes communicate with
each other without resorting to shared variables

+ IPC facility provides two operations:
- send (message) - message size fixed or variable
—recelive (message)

+ If Pand Q wish to communicate, they need to:
- establish a communication link between them
- exchange messages via send/receive

+ Implementation of communication link

- physical (e.g., shared memory, hardware bus,
systcall/trap)

- logical (e.g., logical properties)
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Single and Multithreaded Processes

| code || data H files

I code H data ” files

T T
registers ||| registers ||| registers
stack stack stack

thread — é ; ; ;-—-— thread

multithreaded process

Ireglalersl I stack }

single-threaded process

*+ Threads encapsulate concurrency: "Active” component

+ Address spaces encapsulate protection: “Passive” part
- Keeps buggy program from trashing the system

+ Why have multiple threads per address space?
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Modern “Lightweight” Process with Threads

* Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

- Process still contains a single Address Space
- No protection between threads

* Multithreading: a single program made up of a
number of different concurrent activities

- Sometimes called multitasking, as in Ada...

* Why separate the concept of a thread from that of
a process?

- Discuss the "thread” part of a process (concurrency)
- Separate from the “address space” (Protection)
- Heavyweight Process = Process with one thread
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Examples of multithreaded programs

- Embedded systems
- Elevators, Planes, Medical systems, Wristwatches
- Single Program, concurrent operations

+ Most modern OS kernels

- Internally concurrent because have to deal with
concurrent requests by multiple users

- But no protection needed within kernel

+ Database Servers
- Access to shared data by many concurrent users
- Also background utility processing must be done
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Examples of multithreaded programs (con't)

* Network Servers
- Concurrent requests from network
- Again, single program, multiple concurrent operations
- File server, Web server, and airline reservation
systems
* Parallel Programming (More than one physical CPV)
- Split program into multiple threads for parallelism

- This is called Multiprocessing

- Some multiprocessors are actually uniprogrammed:
- Multiple threads in one address space but one program

at a time
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Execution Stack Example
A: =1
A(int tmp) { ::i=exit
if 2
i (tmp<2) B: ret=A+2
B();
printf (tmp) ; C: ret=b+1
} A: tmp=2
B( { Stack _ ret=C+1
cQO; Pointer 1
} Stack Growth
cO {
- Stack holds temporary results
A(2); R . .
} + Permits recursive execution
AL ; * Crucial to modern languages
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Thread State

+ State shared by all threads in process/addr space
- Contents of memory (global variables, heap)
- I/0 state (file system, network connections, etc)
+ State “private” to each thread
- Kept in TCB = Thread Control Block
- CPU registers (including, program counter)
- Execution stack - what is this?

+ Execution Stack
- Parameters, Temporary variables
- return PCs are kept while called procedures are
executing

Lec 2.34
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Classification

5w

Lk
# threads 5 & e Ny
Per AS: #*

MS/DOS, early
e Macintosh

Embedded systems
(Geoworks, VxWorks,
Many Java0s,etc)

Java0s, Pilot(PC)

* Real operating systems have either
- One or many address spaces
- One or many threads per address space
- Did Windows 95/98/ME have real memory protection?

- No: Users could overwrite process tables/System DLLs
Lec 2.36

Traditional UNIX

Mach, 0S/2, Linux
Windows 9x???

Win NT to XP,
Solaris, HP-UX, OS X
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Example: Implementation Java OS

* Many threads, one Address Space
+ Why another OS?
- Recommended Minimum memory sizes:
» UNIX + X Windows: 32MB
» Windows 98: 16-32MB
» Windows NT: 32-64MB
» Windows 2000/XP: 64-128MB
- What if we want a cheap network
point -of -sale computer?
» Say need 1000 terminals
» Want < 8MB

+ What language to write this OS in?
- C/C++/ASM? Not terribly high-level.
Hard to debug.
- Java/Lisp? Not quite sufficient - need

direct access to HW/memory management
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Java OS
Structure

Java APPS
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Summary

* Processes have two parts
- Threads (Concurrency)
- Address Spaces (Protection)
+ Concurrency accomplished by multiplexing CPU Time:
- Unloading current thread (PC, registers)
- Loading new thread (PC, registers)

- Such context switching may be voluntary (yield(),
I/0 operations) or involuntary (timer, other interrupts)

* Protection accomplished restricting access:
- Memory mapping isolates processes from each other
- Dual-mode for isolating I/0, other resources

+ Book talks about processes

- When this concerns concurrency, really talking about
thread portion of a process

- When this concerns protection, talking about address
space portion of a process
Joseph CS5162 ©UCB Spring 2008
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