
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 2

Concurrency:
Processes, Threads, and Address Spaces

January 28, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 2.21/28/08 Joseph CS162 ©UCB Spring 2008

Review: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks 

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):
– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 2.31/28/08 Joseph CS162 ©UCB Spring 2008

Example: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS

– Keep User Programs from Crashing each other

– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:

– Address Translation

– Dual Mode Operation

• Simple Policy:

– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 2.41/28/08 Joseph CS162 ©UCB Spring 2008

CPU MMU

Virtual
Addresses

Physical
Addresses

Example: Address Translation

• Address Space

– A group of memory addresses usable by something

– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Page 2

Lec 2.51/28/08 Joseph CS162 ©UCB Spring 2008

Example: Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 2.61/28/08 Joseph CS162 ©UCB Spring 2008

Example: Dual Mode Operation

• Hardware provides at least two modes:

– ―Kernel‖ mode (or ―supervisor‖ or ―protected‖)

– ―User‖ mode: Normal programs executed

• Some instructions/ops prohibited in user mode:

– Example: cannot modify page tables in user mode
» Attempt to modify  Exception generated

• Transitions from user mode to kernel mode:
– System Calls, Interrupts, Other exceptions

Lec 2.71/28/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• How do we provide multiprogramming?

• What are Processes?

• How are they related to Threads and Address
Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 2.81/28/08 Joseph CS162 ©UCB Spring 2008

Concurrency

• ―Thread‖ of execution

– Independent Fetch/Decode/Execute loop

– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, Batch processing

– Easier for operating system builder

– Get rid concurrency by defining it away

– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP,
Mac OS X

– Often called ―multitasking‖, but multitasking has
other meanings (talk about this later)

Page 3

Lec 2.91/28/08 Joseph CS162 ©UCB Spring 2008

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources:

– Hardware: single CPU, single DRAM, single I/O devices

– Multiprogramming API: users think they have exclusive
access to machine

• OS Has to coordinate all activity
– Multiple users, I/O interrupts, …

– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Decompose hard problem into simpler ones

– Abstract the notion of an executing program

– Then, worry about multiplexing these abstract machines

• Dijkstra did this for the ―THE system‖
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Lec 2.101/28/08 Joseph CS162 ©UCB Spring 2008

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during execution?

• Execution sequence:

– Fetch Instruction at PC

– Decode

– Execute (possibly using registers)

– Write results to registers/mem

– PC = Next Instruction(PC)

– Repeat

PC
PC
PC
PC

Lec 2.111/28/08 Joseph CS162 ©UCB Spring 2008

How can we give the illusion of multiple processors?

CPU3CPU2CPU1

Shared Memory

• How do we provide the illusion of multiple processors?
– Multiplex in time!

• Each virtual ―CPU‖ needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

CPU1 CPU2 CPU3 CPU1 CPU2

Time

Lec 2.121/28/08 Joseph CS162 ©UCB Spring 2008

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources

– I/O devices the same

– Memory the same

• Consequence of sharing:

– Each thread can access the data of every other
thread (good for sharing, bad for protection)

– Threads can share instructions
(good for sharing, bad for protection)

– Can threads overwrite OS functions?

• This (unprotected) model common in:

– Embedded applications

– Windows 3.1/Machintosh (switch only with yield)

– Windows 95—ME? (switch with both yield and timer)

Page 4

Lec 2.131/28/08 Joseph CS162 ©UCB Spring 2008

Modern Technique: SMT/Hyperthreading

• Hardware technique
– Exploit natural properties
of superscalar processors
to provide illusion of
multiple processors

– Higher utilization of
processor resources

• Can schedule each thread
as if were separate CPU
– However, not linear
speedup!

– If have multiprocessor,
should schedule each
processor first

• Original technique called ―Simultaneous Multithreading‖
– See http://www.cs.washington.edu/research/smt/
– Alpha, SPARC, Pentium 4 (―Hyperthreading‖), Power 5

Lec 2.141/28/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• cs162-xx accounts:
– Make sure you got an account form

» We have more forms for those of you who didn’t get one

– If you haven’t logged in and registered yet, you need
to do so now

• Nachos readers:
– TBA: Will be down at Copy Central on Hearst
– Will include lectures and printouts of all of the code

• Video/Audio archives available off lectures page
– Just click on the title of a lecture for webcast
– Three-day delay on Webcasts and Podcasts

• No slip days on first design document for each phase
– Need to get design reviews in on time

• Don’t know Java well?
– Talk CS 9G self-paced Java course

Lec 2.151/28/08 Joseph CS162 ©UCB Spring 2008

Administriva: Almost Time for Project Signup

• Project Signup: Use ―Group/Section Assignment Link‖
– 4-5 members to a group

» Everyone in group must be able to actually attend same section

» The sections assigned to you by Telebears are temporary!

– Only submit once per group!
» Everyone in group must have logged into their cs162-xx

accounts once before you register the group
» Make sure that you select at least 2 potential sections
» Due date: Thursday (1/31) by 11:59pm

• Sections:
– Go to desired section this week (Thurs/Fri)

Section Time Location TA

101 Th 10:00-11:00A 45 Evans Barret

102 Th 11:00-12:00P 85 Evans Barret

103 Th 4:00-5:00P 3102 Etcheverry Man-Kit

104 F 2:00-3:00P 310 Soda Manu

105 F 3:00-4:00p 405 Soda Manu
Lec 2.161/28/08 Joseph CS162 ©UCB Spring 2008

How to protect threads from one another?

• Need three important things:

1. Protection of memory
» Every task does not have access to all memory

2. Protection of I/O devices
» Every task does not have access to every device

3. Preemptive switching from task to task
» Use of timer

» Must not be possible to disable timer from
usercode

Page 5

Lec 2.171/28/08 Joseph CS162 ©UCB Spring 2008

Progra
m
 A

d
d
re

ss S
pa

ce

Recall: Program’s Address Space

• Address space  the set of
accessible addresses + state
associated with them:
– For a 32-bit processor there are
232 = 4 billion addresses

• What happens when you read or
write to an address?
– Perhaps Nothing

– Perhaps acts like regular memory

– Perhaps ignores writes

– Perhaps causes I/O operation
» (Memory-mapped I/O)

– Perhaps causes exception (fault)

Lec 2.181/28/08 Joseph CS162 ©UCB Spring 2008

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Lec 2.191/28/08 Joseph CS162 ©UCB Spring 2008

Traditional UNIX Process

• Process: Operating system abstraction to
represent what is needed to run a single program
– Often called a ―HeavyWeight Process‖
– Formally: a single, sequential stream of execution
in its own address space

• Two parts:
– Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers

– Protected Resources:
» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Important: There is no concurrency in a
heavyweight process

Lec 2.201/28/08 Joseph CS162 ©UCB Spring 2008

Process
Control
Block

How do we multiplex processes?

• The current state of process held in a
process control block (PCB):
– This is a ―snapshot‖ of the execution and
protection environment

– Only one PCB active at a time

• Give out CPU time to different
processes (Scheduling):
– Only one process ―running‖ at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

Page 6

Lec 2.211/28/08 Joseph CS162 ©UCB Spring 2008

CPU Switch From Process to Process

• This is also called a ―context switch‖
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time

– Less overhead with SMT/hyperthreading, but…
contention for resources instead

Lec 2.221/28/08 Joseph CS162 ©UCB Spring 2008

Diagram of Process State

• As a process executes, it changes state
– new: The process is being created

– ready: The process is waiting to run

– running: Instructions are being executed

– waiting: Process waiting for some event to occur

– terminated: The process has finished execution

Lec 2.231/28/08 Joseph CS162 ©UCB Spring 2008

Process Scheduling

• PCBs move from queue to queue as they change state

– Decisions about which order to remove from queues are
Scheduling decisions

– Many algorithms possible (few weeks from now)

Lec 2.241/28/08 Joseph CS162 ©UCB Spring 2008

What does it take to create a process?

• Must construct new PCB

– Inexpensive

• Must set up new page tables for address space
– More expensive

• Copy data from parent process? (Unix fork())
– Semantics of Unix fork() are that the child
process gets a complete copy of the parent
memory and I/O state

– Originally very expensive

– Much less expensive with ―copy on write‖

• Copy I/O state (file handles, etc)

– Medium expense

Page 7

Lec 2.251/28/08 Joseph CS162 ©UCB Spring 2008

Process =? Program

• More to a process than just a program:
– Program is just part of the process state
– I run emacs on lectures.txt, you run it on
homework.java – Same program, different processes

• Less to a process than a program:
– A program can invoke more than one process
– cc starts up cpp, cc1, cc2, as, and ld

main ()

{

…;

}

A() {

…

}

main ()

{

…;

}

A() {

…

}

Heap

Stack

A
main

Program Process

Lec 2.261/28/08 Joseph CS162 ©UCB Spring 2008

Multiple Processes Collaborate on a Task

• High Creation/memory Overhead
• (Relatively) High Context-Switch Overhead
• Need Communication mechanism:

– Separate Address Spaces Isolates Processes
– Shared-Memory Mapping

» Accomplished by mapping addresses to common DRAM

» Read and Write through memory

– Message Passing
» send() and receive() messages

» Works across network

Proc 1 Proc 2 Proc 3

Lec 2.271/28/08 Joseph CS162 ©UCB Spring 2008

Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2

Stack 1

Heap 1

Code 1

Stack 2

Data 1

Heap 2

Code 2

Shared

• Communication occurs by ―simply‖ reading/writing
to shared address page

– Really low overhead communication

– Introduces complex synchronization problems

Code

Data

Heap

Stack

Shared

Code

Data

Heap

Stack

Shared BREAK

Page 8

Lec 2.291/28/08 Joseph CS162 ©UCB Spring 2008

Inter-process Communication (IPC)

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with
each other without resorting to shared variables

• IPC facility provides two operations:
– send(message) – message size fixed or variable

– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them

– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus,
systcall/trap)

– logical (e.g., logical properties)
Lec 2.301/28/08 Joseph CS162 ©UCB Spring 2008

Modern ―Lightweight‖ Process with Threads

• Thread: a sequential execution stream within process
(Sometimes called a ―Lightweight process‖)

– Process still contains a single Address Space

– No protection between threads

• Multithreading: a single program made up of a
number of different concurrent activities
– Sometimes called multitasking, as in Ada…

• Why separate the concept of a thread from that of
a process?

– Discuss the ―thread‖ part of a process (concurrency)

– Separate from the ―address space‖ (Protection)

– Heavyweight Process  Process with one thread

Lec 2.311/28/08 Joseph CS162 ©UCB Spring 2008

Single and Multithreaded Processes

• Threads encapsulate concurrency: ―Active‖ component

• Address spaces encapsulate protection: ―Passive‖ part

– Keeps buggy program from trashing the system

• Why have multiple threads per address space?

Lec 2.321/28/08 Joseph CS162 ©UCB Spring 2008

Examples of multithreaded programs

• Embedded systems

– Elevators, Planes, Medical systems, Wristwatches

– Single Program, concurrent operations

• Most modern OS kernels

– Internally concurrent because have to deal with
concurrent requests by multiple users

– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users

– Also background utility processing must be done

Page 9

Lec 2.331/28/08 Joseph CS162 ©UCB Spring 2008

Examples of multithreaded programs (con’t)

• Network Servers

– Concurrent requests from network

– Again, single program, multiple concurrent operations

– File server, Web server, and airline reservation
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism

– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program
at a time

Lec 2.341/28/08 Joseph CS162 ©UCB Spring 2008

Thread State

• State shared by all threads in process/addr space

– Contents of memory (global variables, heap)

– I/O state (file system, network connections, etc)

• State ―private‖ to each thread

– Kept in TCB  Thread Control Block

– CPU registers (including, program counter)

– Execution stack – what is this?

• Execution Stack
– Parameters, Temporary variables

– return PCs are kept while called procedures are
executing

Lec 2.351/28/08 Joseph CS162 ©UCB Spring 2008

Execution Stack Example

• Stack holds temporary results

• Permits recursive execution

• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=2

ret=C+1Stack
Pointer

Stack Growth

A: tmp=1

ret=exit

B: ret=A+2

C: ret=b+1

Lec 2.361/28/08 Joseph CS162 ©UCB Spring 2008

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux

Windows 9x???

Win NT to XP,
Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)

JavaOS, Pilot(PC)

Traditional UNIX
MS/DOS, early

Macintosh

Many

One

threads

Per AS:

ManyOne

#
 o

f
a
d
d
r

sp
a
ce

s:

Page 10

Lec 2.371/28/08 Joseph CS162 ©UCB Spring 2008

Java APPS

OS

Hardware

Java OS
Structure

Example: Implementation Java OS

• Many threads, one Address Space

• Why another OS?
– Recommended Minimum memory sizes:

» UNIX + X Windows: 32MB

» Windows 98: 16-32MB

» Windows NT: 32-64MB

» Windows 2000/XP: 64-128MB

– What if we want a cheap network
point-of-sale computer?

» Say need 1000 terminals

» Want < 8MB

• What language to write this OS in?
– C/C++/ASM? Not terribly high-level.
Hard to debug.

– Java/Lisp? Not quite sufficient – need
direct access to HW/memory management

Lec 2.381/28/08 Joseph CS162 ©UCB Spring 2008

Summary

• Processes have two parts
– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(),
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Book talks about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

