
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 4

Cooperating Threads

February 4, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 4.22/4/08 Joseph CS162 ©UCB Spring 2008

Review: Per Thread State

• Each Thread has a Thread Control Block (TCB)

– Execution State: CPU registers, program counter,
pointer to stack

– Scheduling info: State (more later), priority, CPU time

– Accounting Info

– Various Pointers (for implementing scheduling queues)

– Pointer to enclosing process? (PCB)?

– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in protected memory
– In Arrays, or Linked Lists, or …

Other
State
TCB9

Link

Registers
Other
State
TCB6

Link

Registers
Other
State
TCB16

Link

Registers

Head

Tail

Ready
Queue

Lec 4.32/4/08 Joseph CS162 ©UCB Spring 2008

Review: Yielding through Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {

while(TRUE) {

ComputeNextDigit();

yield();

}

}

– Note that yield() must be called by programmer
frequently enough!

Lec 4.42/4/08 Joseph CS162 ©UCB Spring 2008

Review: Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();

switch(curThread, newThread);

ThreadHouseKeeping(); /* Later in lecture */

}

• How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI S
ta

ck
 grow

thrun_new_thread

kernel_yield
Trap to OS

switch

Page 2

Lec 4.52/4/08 Joseph CS162 ©UCB Spring 2008

Review: Two Thread Yield Example

• Consider the following
code blocks:

proc A() {

B();

}

proc B() {

while(TRUE) {

yield();

}

}

• Suppose we have 2
threads:
– Threads S and T

Thread S

S
ta

ck
 g

ro
w
th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Lec 4.62/4/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• More on Interrupts

• Thread Creation/Destruction

• Cooperating Threads

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 4.72/4/08 Joseph CS162 ©UCB Spring 2008

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

I
nte

rrup
t M

a
sk

ControlSoftware
Interrupt NMI

CPU

Priority
 E

ncod
e
r

T
im

e
r

Int Disable

Lec 4.82/4/08 Joseph CS162 ©UCB Spring 2008

Example: Network Interrupt

• Disable/Enable All Ints  Internal CPU disable bit
– RTI reenables interrupts, returns to user mode

• Raise/lower priority: change interrupt mask
• Software interrupts can be provided entirely in

software at priority switching boundaries


add $r1,$r2,$r3

subi $r4,$r1,#4

slli $r4,$r4,#2

Raise priority
Reenable All Ints

Save registers
Dispatch to Handler


Transfer Network

Packet from hardware
to Kernel Buffers


Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

e
rr

up
t

H
a
nd

le
r”

lw $r2,0($r4)

lw $r3,4($r4)

add $r2,$r2,$r3

sw 8($r4),$r2


E
x
te

rn
a
l
I
nt

e
rr

up
t

Pipeline Flush

Page 3

Lec 4.92/4/08 Joseph CS162 ©UCB Spring 2008

Review: Preemptive Multithreading

• Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();

run_new_thread();

}

• This is often called preemptive multithreading, since
threads are prempted for better scheduling
– Solves problem of user who doesn’t insert yield();

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

S
ta

ck
 grow

th

Lec 4.102/4/08 Joseph CS162 ©UCB Spring 2008

Review: Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new: The thread is being created
– ready: The thread is waiting to run
– running: Instructions are being executed
– waiting: Thread waiting for some event to occur
– terminated: The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state

Lec 4.112/4/08 Joseph CS162 ©UCB Spring 2008

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue
– We called this CreateThread() earlier

• Arguments to ThreadFork()

– Pointer to application routine (fcnPtr)

– Pointer to array of arguments (fcnArgPtr)

– Size of stack to allocate

• Implementation
– Sanity Check arguments

– Enter Kernel-mode and Sanity Check arguments again

– Allocate new Stack and TCB

– Initialize TCB and place on ready list (Runnable).

Lec 4.122/4/08 Joseph CS162 ©UCB Spring 2008

How do we initialize TCB and Stack?

• Initialize Register fields of TCB

– Stack pointer made to point at stack

– PC return address  OS (asm) routine ThreadRoot()

– Two arg registers initialized to fcnPtr and fcnArgPtr

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)

– Think of stack frame as just before body of
ThreadRoot() really gets started

ThreadRoot stub

Initial Stack

S
ta

ck
 grow

th

Page 4

Lec 4.132/4/08 Joseph CS162 ©UCB Spring 2008

Administrivia
• Information about Subversion on Handouts page

– Make sure to take a look

• Other things on Handouts page
– Synchronization examples/Interesting papers
– Previous finals/solutions

• Sections in this class are mandatory
– Make sure that you go to the section that you have
been assigned!

– Sections will be up off the home page
» Make sure to respond to Barret if he contacts you

» He is attempting to fix section assignments

• Reader still TBA
• Should be reading Nachos code by now!

– Start working on the first project
– Set up regular meeting times with your group
– Try figure out group interaction problems early on

Lec 4.142/4/08 Joseph CS162 ©UCB Spring 2008

How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

– This really starts the new thread

S
ta

ck
 g

ro
w
th

A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 4.152/4/08 Joseph CS162 ©UCB Spring 2008

What does ThreadRoot() look like?

• ThreadRoot() is the root for the thread routine:
ThreadRoot() {

DoStartupHousekeeping();

UserModeSwitch(); /* enter user mode */

Call fcnPtr(fcnArgPtr);

ThreadFinish();

}

• Startup Housekeeping
– Includes things like recording
start time of thread

– Other Statistics

• Stack will grow and shrink
with execution of thread

• Final return from thread returns into ThreadRoot()
which calls ThreadFinish()
– ThreadFinish() will start at user-level

ThreadRoot

Running Stack

S
ta

ck
 grow

th

Thread Code

Lec 4.162/4/08 Joseph CS162 ©UCB Spring 2008

What does ThreadFinish() do?

• Needs to re-enter kernel mode (system call)
• “Wake up” (place on ready queue) threads waiting

for this thread
– Threads (like the parent) may be on a wait queue
waiting for this thread to finish

• Can’t deallocate thread yet
– We are still running on its stack!
– Instead, record thread as “waitingToBeDestroyed”

• Call run_new_thread() to run another thread:
run_new_thread() {

newThread = PickNewThread();

switch(curThread, newThread);

ThreadHouseKeeping();

}

– ThreadHouseKeeping() notices waitingToBeDestroyed
and deallocates the finished thread’s TCB and stack

Page 5

Lec 4.172/4/08 Joseph CS162 ©UCB Spring 2008

Additional Detail

• Thread Fork is not the same thing as UNIX fork

– UNIX fork creates a new process so it has to
create a new address space

– For now, don’t worry about how to create and
switch between address spaces

• Thread fork is very much like an asynchronous
procedure call
– Runs procedure in separate thread

– Calling thread doesn’t wait for finish

• What if thread wants to exit early?
– ThreadFinish() and exit() are essentially the
same procedure entered at user level

Lec 4.182/4/08 Joseph CS162 ©UCB Spring 2008

Parent-Child relationship

• Every thread (and/or Process) has a parentage

– A “parent” is a thread that creates another thread

– A child of a parent was created by that parent

Typical process tree
for Solaris system

Lec 4.192/4/08 Joseph CS162 ©UCB Spring 2008

ThreadJoin() system call

• One thread can wait for another to finish with the
ThreadJoin(tid) call
– Calling thread will be taken off run queue and placed on
waiting queue for thread tid

• Where is a logical place to store this wait queue?
– On queue inside the TCB

• Similar to wait() system call in UNIX
– Lets parents wait for child processes

Other
State
TCB9

Link

Registers
Other
State
TCB6

Link

Registers
Other
State
TCB16

Link

Registers

Head

Tail

Termination
Wait queue

TCBtid

Lec 4.202/4/08 Joseph CS162 ©UCB Spring 2008

Use of Join for Traditional Procedure Call

• A traditional procedure call is logically equivalent to
doing a ThreadFork followed by ThreadJoin

• Consider the following normal procedure call of B()
by A():

A() { B(); }

B() { Do interesting, complex stuff }

• The procedure A() is equivalent to A’():

A’() {

tid = ThreadFork(B,null);

ThreadJoin(tid);

}

• Why not do this for every procedure?

– Context Switch Overhead

– Memory Overhead for Stacks

Page 6

BREAK

Lec 4.222/4/08 Joseph CS162 ©UCB Spring 2008

Kernel versus User-Mode threads

• We have been talking about Kernel threads
– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on
different things

• Downside of kernel threads: a bit expensive
– Need to make a crossing into kernel mode to schedule

• Even lighter weight option: User Threads
– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative
to each other (only switch on yield())

– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads

Lec 4.232/4/08 Joseph CS162 ©UCB Spring 2008

Threading models mentioned by book

Simple One-to-One
Threading Model

Many-to-One Many-to-Many

Lec 4.242/4/08 Joseph CS162 ©UCB Spring 2008

Multiprocessing vs Multiprogramming

• Remember Definitions:
– Multiprocessing  Multiple CPUs or cores
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A

B

C
Multiprocessing

Page 7

Lec 4.252/4/08 Joseph CS162 ©UCB Spring 2008

Correctness for systems with concurrent threads

• If dispatcher can schedule threads in any way,
programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic  Input state determines results
– Reproducible  Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 4.262/4/08 Joseph CS162 ©UCB Spring 2008

Interactions Complicate Debugging

• Is any program truly independent?
– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack

• Non-deterministic errors are really difficult to find
– Example: Memory layout of kernel+user programs

» depends on scheduling, which depends on timer/other things

» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 4.272/4/08 Joseph CS162 ©UCB Spring 2008

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multi-proc/-core – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 4.282/4/08 Joseph CS162 ©UCB Spring 2008

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {

con = AcceptCon();

ProcessFork(ServiceWebPage(),con);

}

• What are some disadvantages of this technique?

Page 8

Lec 4.292/4/08 Joseph CS162 ©UCB Spring 2008

Threaded Web Server

• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {

connection = AcceptCon();

ThreadFork(ServiceWebPage(),connection);

}

• Looks almost the same, but has many advantages:
– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

Lec 4.302/4/08 Joseph CS162 ©UCB Spring 2008

Thread Pools

• Problem with previous version: Unbounded Threads
– When web-site becomes too popular – throughput sinks

• Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

master() {

allocThreads(worker,queue);

while(TRUE) {

con=AcceptCon();

Enqueue(queue,con);

wakeUp(queue);

}

}

worker(queue) {

while(TRUE) {

con=Dequeue(queue);

if (con==null)

sleepOn(queue);

else

ServiceWebPage(con);

}

}

Master
Thread

Thread Pool
que

ue

Lec 4.312/4/08 Joseph CS162 ©UCB Spring 2008

Summary

• Interrupts: hardware mechanism for returning control
to operating system
– Used for important/high-priority events
– Can force dispatcher to schedule a different thread
(premptive multithreading)

• New Threads Created with ThreadFork()
– Create initial TCB and stack to point at ThreadRoot()
– ThreadRoot() calls thread code, then ThreadFinish()
– ThreadFinish() wakes up waiting threads then
prepares TCB/stack for distruction

• Threads can wait for other threads using
ThreadJoin()

• Threads may be at user-level or kernel level
• Cooperating threads have many potential advantages

– But: introduces non-reproducibility and non-determinism
– Need to have Atomic operations

