
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 7

Readers-Writers
Language Support for Synchronization

February 13, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 7.22/13/08 Joseph CS162 ©UCB Spring 2008

Review: Semaphores

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:
– Only time can set integer directly is at initialization time

• P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1
– Think of this as the wait() operation

• V(): an atomic operation that increments the
semaphore by 1, waking up a waiting P, if any
– This of this as the signal() operation

Lec 7.32/13/08 Joseph CS162 ©UCB Spring 2008

Review: Full Solution to Bounded Buffer

Semaphore fullBuffer = 0; // Initially, no coke

Semaphore emptyBuffers = numBuffers;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {
emptyBuffers.P(); // Wait until space
mutex.P(); // Wait until buffer free
Enqueue(item);
mutex.V();
fullBuffers.V(); // Tell consumers there is

// more coke
}

Consumer() {
fullBuffers.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptyBuffers.V(); // tell producer need more
return item;

}

Lec 7.42/13/08 Joseph CS162 ©UCB Spring 2008

Review: Discussion about Solution

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except for scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Nothing changes!

• Semaphores are a huge step up, but:
– They are confusing because they are dual purpose:

» Both mutual exclusion and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious

– Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

Page 2

Lec 7.52/13/08 Joseph CS162 ©UCB Spring 2008

Review: Monitors and Condition Variables

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared
data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the
language

• The lock provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

Lec 7.62/13/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Continue with Synchronization Abstractions

– Monitors and condition variables

• Readers-Writers problem and solution

• Language Support for Synchronization

• An Overview of ACID properties in a DBMS

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 7.72/13/08 Joseph CS162 ©UCB Spring 2008

Simple Monitor Example (version 1)

• Here is an (infinite) synchronized queue

Lock lock;

Queue queue;

AddToQueue(item) {

lock.Acquire(); // Lock shared data

queue.enqueue(item); // Add item

lock.Release(); // Release Lock

}

RemoveFromQueue() {

lock.Acquire(); // Lock shared data

item = queue.dequeue();// Get next item or null

lock.Release(); // Release Lock

return(item); // Might return null

}

Lec 7.82/13/08 Joseph CS162 ©UCB Spring 2008

Condition Variables

• How do we change the RemoveFromQueue() routine to
wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of
lock – IGNORE HIM (this is only an optimization)

Page 3

Lec 7.92/13/08 Joseph CS162 ©UCB Spring 2008

Complete Monitor Example (with condition variable)

• Here is an (infinite) synchronized queue
Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}

Lec 7.102/13/08 Joseph CS162 ©UCB Spring 2008

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal

and wait. Consider a piece of our dequeue code:
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it

exits critical section or if it waits again
– Mesa-style (Nachos, most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

Lec 7.112/13/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• First design document due tomorrow by 11:59pm
– Good luck!
– Use the newsgroup for questions (search Google groups)

• Design reviews:
– Everyone must attend! (no exceptions)
– 2 points off for one missing person
– 1 additional point off for each additional missing person
– Penalty for arriving late (plan on arriving 5—10 mins
early)

– Sign up link will be posted on announcements and projects
pages

• What we expect in document/review:
– Architecture, correctness constraints, algorithms,
pseudocode, NO CODE!

– Important: testing strategy, and test case types

Lec 7.122/13/08 Joseph CS162 ©UCB Spring 2008

Readers/Writers Problem

• Motivation: Consider a shared database

– Two classes of users:
» Readers – never modify database

» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time

» Only one writer at a time

R
R

R

W

Page 4

Lec 7.132/13/08 Joseph CS162 ©UCB Spring 2008

Basic Readers/Writers Solution

• Correctness Constraints:
– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()

Wait until no writers
Access data base
Check out – wake up a waiting writer

– Writer()
Wait until no active readers or writers
Access database
Check out – wake up waiting readers or writer

– State variables (Protected by a lock called ―lock‖):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL

Lec 7.142/13/08 Joseph CS162 ©UCB Spring 2008

Code for a Reader

Reader() {

// First check self into system

lock.Acquire();

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist

okToRead.wait(&lock); // Sleep on cond var

WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release();

// Perform actual read-only access

AccessDatabase(ReadOnly);

// Now, check out of system

lock.Acquire();

AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer

lock.Release();

}

Lec 7.152/13/08 Joseph CS162 ©UCB Spring 2008

Writer() {
// First check self into system
lock.Acquire();

while ((AW + AR) > 0) { // Is it safe to write?
WW++; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!
lock.release();

// Perform actual read/write access
AccessDatabase(ReadWrite);

// Now, check out of system
lock.Acquire();
AW--; // No longer active
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}
lock.Release();

}
Why Give priority

Code for a Writer

Lec 7.162/13/08 Joseph CS162 ©UCB Spring 2008

Simulation of Readers/Writers solution

• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist

okToRead.wait(&lock); // Sleep on cond var

WR--; // No longer waiting

}

AR++; // Now we are active!

• First, R1 comes along:
AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database
– Situation: Locks released

– Only AR is non-zero

Page 5

Lec 7.172/13/08 Joseph CS162 ©UCB Spring 2008

Simulation(2)

• Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++;

• Can’t start because of readers, so go to sleep:
AR = 2, WR = 0, AW = 0, WW = 1

• Finally, R3 comes along:
AR = 2, WR = 1, AW = 0, WW = 1

• Now, say that R2 finishes before R1:
AR = 1, WR = 1, AW = 0, WW = 1

• Finally, last of first two readers (R1) finishes and
wakes up writer:

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

Lec 7.182/13/08 Joseph CS162 ©UCB Spring 2008

Simulation(3)

• When writer wakes up, get:
AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers

}

– Writer wakes up reader, so get:

AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

Lec 7.192/13/08 Joseph CS162 ©UCB Spring 2008

Questions

• Can readers starve? Consider Reader() entry code:
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
AR--; // No longer active
okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call
it ―okToContinue‖) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

Lec 7.202/13/08 Joseph CS162 ©UCB Spring 2008

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait() { semaphore.P(); }

Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {
lock.Release();
semaphore.P();
lock.Acquire();

}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

Page 6

Lec 7.212/13/08 Joseph CS162 ©UCB Spring 2008

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {
lock.Release();
semaphore.P();
lock.Acquire();

}
Signal() {

if semaphore queue is not empty
semaphore.V();

}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

Lec 7.222/13/08 Joseph CS162 ©UCB Spring 2008

Monitor Conclusion

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
lock
while (need to wait) {

condvar.wait();
}
unlock

do something so no need to wait

lock

condvar.signal();

unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

BREAK

Lec 7.242/13/08 Joseph CS162 ©UCB Spring 2008

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section
int Rtn() {

lock.acquire();
…
if (exception) {

lock.release();
return errReturnCode;

}
…
lock.release();
return OK;

}

– Watch out for setjmp/longjmp!
» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack

back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

S
ta

ck
 grow

th

Page 7

Lec 7.252/13/08 Joseph CS162 ©UCB Spring 2008

C++ Language Support for Synchronization

• Languages with exceptions like C++
– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();

…

DoFoo();

…

lock.release();

}

void DoFoo() {

…

if (exception) throw errException;

…

}

– Notice that an exception in DoFoo() will exit without
releasing the lock

Lec 7.262/13/08 Joseph CS162 ©UCB Spring 2008

C++ Language Support for Synchronization (con’t)

• Must catch all exceptions in critical sections
– Catch exceptions, release lock, and re-throw exception:

void Rtn() {
lock.acquire();

try {
…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;

…
}

– Even Better: auto_ptr<T> facility. See C++ Spec.
» Can deallocate/free lock regardless of exit method

Lec 7.272/13/08 Joseph CS162 ©UCB Spring 2008

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
class Account {

private int balance;
// object constructor
public Account (int initialBalance) {

balance = initialBalance;
}
public synchronized int getBalance() {

return balance;
}
public synchronized void deposit(int amount) {

balance += amount;
}

}

– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

Lec 7.282/13/08 Joseph CS162 ©UCB Spring 2008

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:

synchronized (object) {

…

}

– Since every Java object has an associated lock, this
type of statement acquires and releases the object’s
lock on entry and exit of the body

– Works properly even with exceptions:

synchronized (object) {

…

DoFoo();

…

}

void DoFoo() {

throw errException;

}

Page 8

Lec 7.292/13/08 Joseph CS162 ©UCB Spring 2008

Java Language Support for Synchronization (con’t 2)

• In addition to a lock, every object has a single
condition variable associated with it
– How to wait inside a synchronization method or block:

» void wait(long timeout); // Wait for timeout

» void wait(long timeout, int nanoseconds); //variant

» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter

» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

t1 = time.now();
while (!ATMRequest()) {

wait (CHECKPERIOD);
t2 = time.new();
if (t2 – t1 > LONG_TIME) checkMachine();

}

– Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!

Lec 7.302/13/08 Joseph CS162 ©UCB Spring 2008

ACID

• How does a database handle concurrency?

– It provides A.C.I.D. properties – Atomicity,
Consistency, Isolation, Durability

• Key concept: Transaction
– An atomic sequence of database actions
(reads/writes)

» Actions all happen or none at all

– Takes DB from one consistent state to another

consistent state 1 consistent state 2
transaction

Lec 7.312/13/08 Joseph CS162 ©UCB Spring 2008

DBMS Consistency Example

• Here, consistency is based on our knowledge of
banking ―semantics‖

• In general, up to writer of transaction to
ensure transaction preserves consistency

• DBMS provides (limited) automatic enforcement,
via integrity constraints
– e.g., balances must be >= 0

checking: $200
savings: $1000

transaction checking: $300
savings: $900

Lec 7.322/13/08 Joseph CS162 ©UCB Spring 2008

Challenge: Concurrent transactions

• Goal: execute xacts {T1, T2, … Tn}, and ensure
a consistent outcome

– Isolate xact’s intermediate state from other xacts

• One option: ―serial‖ schedule (one after another)

• Better: allow interleaving of xact actions, as long
as outcome is equivalent to some serial schedule

• Two possible enforcement methods
– Optimistic: permit arbitrary interleaving, then
check equivalence to serial schedule

– Pessimistic: xacts set locks on data objects, such
that illegal interleaving is impossible

» More on locking in another lecture…

Page 9

Lec 7.332/13/08 Joseph CS162 ©UCB Spring 2008

Ensuring Transaction Properties

• DBMS ensures:
– Atomicity even if xact aborted (due to deadlock, system

crash, …)

– Durability (persistence) of committed xacts, even if system
crashes

• Idea: Keep a log of all actions carried out by the
DBMS:
– Record all DB modifications in log, before they are executed

– To abort a xact, undo logged actions in reverse order

– If system crashes, must:

1) undo partially executed xacts (ensures atomicity)

2) redo committed xacts (ensures durability)

– Much trickier than it sounds!
Lec 7.342/13/08 Joseph CS162 ©UCB Spring 2008

• Atomicity: guarantee that either all of the tasks of
a transaction are performed, or none of them are

• Consistency: database is in a legal state when the
transaction begins and when it ends – a transaction
cannot break the rules, or integrity constraints

• Isolation: operations inside a transaction appear
isolated from all other operations – no operation
outside transaction can see data in an intermediate
state

• Durability: guarantee that once the user has been
notified of success, the transaction will persist
(survive system failure)

ACID Summary

Lec 7.352/13/08 Joseph CS162 ©UCB Spring 2008

Summary

• Monitors: A lock plus one or more condition variables
– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

• Readers/Writers
– Readers can access database when no writers
– Writers can access database when no readers
– Only one thread manipulates state variables at a time

• Language support for synchronization:
– Java provides synchronized keyword and one condition-
variable per object (with wait() and notify())

