Cs162
Operating Systems and
Systems Programming
Lecture 8

Tips for Working in a Project Team/
Cooperating Processes and Deadlock

February 20, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Tips for Programming in a Project Team

- Big projects require more than one
person (or long, long, long time)

- Big OS: thousands of person-years!

+ It's very hard to make software
project teams work correctly
- Doesn't seem to be as true of big
construction projects

» Empire state building finished in
one year: staging iron production
thousands of miles away

» Or the Hoover dam: built towns to
hold workers

- Is it OK to miss deadlines?

» We make it free (slip days)

» Reality: they're very expensive as
time-to-market is one of the most
important things!

2/20/08 Joseph €162 ®UCB Spring 2008 Lec 8.3

"You just have
fo get your
synchronization right!”

Page 1

Goals for Today

+ Tips for Programming in a Project Team
- Discussion of Deadlocks
- Conditions for its occurrence
- Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
2/20/08 Joseph CS5162 ©UCB Spring 2008 Lec 8.2

Big Projects

* What is a big project?
- Time/work estimation is hard

- Programmers are eternal olaﬁmistics
(it will only take two days)!

» This is why we bug you about
starting the project early

» Had a grad student who used to say he just needed
“10 minutes” to fix something. Two hours later...

* Can a project be efficiently partitioned?

- Partitionable task decreases in time as
you add people

- But, if you require communication: A'
» Time reaches a minimum bound \ _~

» With complex interactions, time increases!
- Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people

» Project takes even more timel
2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.4

Techniques for Partitioning Tasks

* Functional
- Person A implements threads, Person B implements
semaphores, Person C implements locks...
- Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes

» Story: Large airline company spent $200 million on a new
scheduling ‘and booking system. Two teams “working
together.” After two years, went to merge software.
Failed! Interfaces had changed (documenfed, but no one
noticed). Result: would cost” another $200 million to fix.

+ Task
- Person A designs, Person B writes code, Person C tests
- Max‘ be difficult to find right balance, but can focus on
each person's strengths (Theory vs systems hacker)
- Since Debugging is hard, Microsoft has fwo testers for
each programmer
* Most €S162 project teams are functional, but people

have had success with task-based divisions
2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.5

(@S

Communication

Q@
\

*+ More people mean more communication (=
- Changes have to be propagated to more people
- Think about person writing code for most
fundamental component of system: everyone depends
on them!
* Miscommunication is common
- "Index starts at 0? I thought you said 1!”
* Who makes decisions?
- Individual decisions are fast but trouble
- Group decisions take time
- Centralized decisions require a big picture view (someone
who can be the "system archi'recg')
+ Often designating someone as the system architect
can be a good thing
- Better not be clueless
- Better have good people skills
- Better let other people do work
2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.7

Page 2

Defensive Programming

+ Like defensive driving, but for code:

- Avoid depending on others, so that if they do something
unexpected, you won't crash - survive unexpected behavior

- Software engineering focuses on functionality:
- Given correct inputs, code produces useful/correct outputs

+ Security cares about what happens when program is
given invalid or unexpected inputs:
- Shouldn't crash, cause undesirable side-effects, or
produce dangerous outputs for bad inputs

- Defensive programming

- Apply idea at every interface or security perimeter

» So each module remains robust even if all others misbehave

* General strategy

- Assume attacker controls module’s inputs, make sure

nothing terrible happens
Joseph CS5162 ©UCB Spring 2008 Lec 8.6

2/20/08

* More people = no one can make all meefings!;

Coordination §

- They miss decisions and associated discussion \

- Example from earlier class: one person missed
meetings and did something group had rejected

- Why do we limit groups to 5 people?
» You would never be able to schedule meetings otherwise
- Why do we require 4 people minimum?
» You need to experience groups to get ready for real world

* People have different work styles

- Some people work in the morning, some at night
- How do you decide when to meet or work together?

* What about project slippage?

- It will happen, guaranteed!
- Ex: phase 4, everyone busy but not talking. One person
way behind. No one knew until very end - too late!
* Hard to add people to existing group
- Members have already figured out how to work together

2/20/08 Joseph C5162 ©UCB Spring 2008 Lec 8.8

How to Make it Work?

* People are human. Get over it.
- People will make mistakes, miss meetings, miss
deadlines, etc. You need to live with it and adapt
- It is better to anticipate problems than clean up
afterwards.
+ Document, document, document
- Why Document?
» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress
- What to document?
» Everything (but don't overwhelm people or no one will read)
- Standardize!

» One programming format: variable naming conventions, tab
indents etc.

» Comments (Requires, effects, modifies)—javadoc?

2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.9

Taming Complexity with Abstractions

* Break large, complex system into independent
components

- Goal: independently design, implement, and test each
component

- Added benefit: better security through isolation
- But, components must work together in the final system

+ We need interfaces (specs) between the components
- The boundaries between components (and people)
- To isolate them from one another
- To ensure the final system actually works

+ The interfaces must not change (much)!

- Otherwise, development is not parallel

2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.11

Page 3

Suggested Documents for You to Maintain

* Project objectives: goals, constraints, and priorities
- Specifications: the manual plus performance specs

- This should be the first document generated and the
last one finished

* Meeting notes
- Document all decisions
- You can often cut & paste for the design documents
* Schedule: What is your anticipated timing?
- This document is criticall
* Organizational Chart
- Who is responsible for what task?

2/20/08 Joseph CS5162 ©UCB Spring 2008 Lec 8.10

Use Software Tools

+ Source revision control software

- (CVS, Subversion, others...)

- Easy to go back and see history/undo mistakes

- Figure out where and why a bug got introduced

- Communicates changes to everyone (use CVS's features)
+ Use automated testing tools

- Write scripts for non-interactive software

- Use “expect” for interactive software

- JUnit: automate unit testing

- Microsoft rebuilds the Vista kernel every night with the
day's changes. Everyone is running/testing the latest
sottware

* Use E-mail and instant messaging consistently to
leave a history trail

2/20/08 Joseph C5162 ©UCB Spring 2008 Lec 8.12

Test Continuously

+ Integration tests all the time, not at 11pm
on due datel

- Write dummy stubs with simple functionality
» Let's people test continuously, but more work
- Schedule periodic integration tests

» Get everyone in the same room, check out code, build,
and fest.

» Don't wait until it is too late!
+ Testing types:
- Unit tests: check each module in isolation (use JUnit?)
- Daemons: subject code to exceptional cases
- Random testing: Subject code to random timing changes
+ Test early, test later, test again

- Tendency is to test once and forget; what if something
changes in some other part of the code?

2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.13
2/20/08 Joseph 5162 ®UCB Spring 2008 Lec 8.15

Page 4

2/20/08

Administrivia

Midterm I next week:
- Wednesday, 2/27, 10 Evans 6-7:30pm
- Closed book, no notes, no calculators/PDAs

- Topics: Everything including today (lectures, book,
readings, projects)

- Email cs162 with conflicts (academic only)

No class on day of Midterm

I will post extra office hours for people who have
questions about the material (or life, whatever)

Midterm I review session Monday 2/25 after class
- 120 Latimer, 6-7:30pm

Joseph CS5162 ©UCB Spring 2008 Lec 8.14

2/20/08

Resources

Resources - passive entities needed by threads to do
their work s
- CPU time, disk space, memory ‘g}.
Two types of resources: =
- Preemptable - can take it away 3
» CPU, Embedded security chip -,
- Non-preemptable - must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

Resources may require exclusive access or may be
sharable

- Read-only files are typically sharable
- Printers are not sharable during time of printing

One of the major tasks of an operating system is to

manage resources
Joseph CS162 ®UCB Spring 2008

Lec 8.16

Starvation vs Deadlock

- Starvation vs. Deadlock
- Starvation: thread waits indefinitely

» Example, low-priority thread waiting for resources
constantly in use by high-priority threads

- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)

» Deadlock can't end without external intervention
2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.17

O

Bridge Crossing Example

+ Each segment of road can be viewed as a resource
- Car must own the segment under them
- Must acquire segment that they are moving into

+ For bridge: must acquire both halves
- Traffic only in one direction at a time

- Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

+ If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

- Several cars may have to be backed up
+ Starvation is possible

- East-going traffic really fast = no one goes west
2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.19

Page 5

Conditions for Deadlock

+ Deadlock not always deterministic - Example 2 mutexes:

Thread A Thread B
x.P(); y.-PO);
y-PO); x.P();
y-vQ); x.V();
x.V(); Y.V

- Deadlock won't always happen with this code
» Have to have exactly the right timing (“wrong” timing?)

» So you release a piece of software, and you tested it, and
there it is, controlling a nuclear power plant...

+ Deadlocks occur with multiple resources

- Means you can't decompose the problem

- Can't solve deadlock for each resource independently
+ Example: System with 2 disk drives and two threads

- Each thread needs 2 disk drives to function

- Each thread gets one disk and waits for another one
2/20/08 Joseph CS5162 ©UCB Spring 2008 Lec 8.18

Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
+ Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

2/20/08 Lec §.20

Dining Lawyers Problem
%)

i

{3

- Five chopsticks/Five lawyers (really cheap restaurant)
- Free-for all: Lawyer will grab any one they can
- Need two chopsticks to eat
* What if all grab at same time?
- Deadlock!
* How to fix deadlock?
- Make one of them give up a chopstick (Hah!)
- Eventually everyone will get chance to eat
* How to prevent deadlock?

- Never let lawyer take last chopstick if no hungry

lawyer has TwoJcho%sﬁcks afterwards

2/20/08 oseph 'C5162 ©UCB Spring 2008 Lec 8.21

Safe and Unsafe States

+ Safe state - system will not enter a deadlock
condition

* Unsafe state - system may enter a deadlock
condition

+ Being in an unsafe state does not guarantee that
the system will deadlock

- Thread requests A resulting in an unsafe state
- Then it releases B which would prevent circular

wait
- The system is in an unsafe state, but not in
deadlock
2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.23

Page 6

Four requirements for Deadlock

* Mutual exclusion
- Only one thread at a time can use a resource.
* Hold and wait
- Thread holding at least one resource is waiting to
acquire additional resources held by other threads
* No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it
+ Circular wait
- There exists a set {T;, .., T,} of waiting threads
» Ty is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T3
»

» T, is waiting for a resource that is held by T;

2/20/08 Joseph CS5162 ©UCB Spring 2008 Lec 8.22

BREAK

Resource-Allocation Graph

- System Model Symbols
-Asetof Threads 7, T, . .., T, @ @
- Resource types R, R;, . . ., R,
CPU cycles, memory space, I/0 devices El :
- Each resource type R has W, instances. .
- Each thread utilizes a resource as follows: R,
» Request () / Use() / Release()
+ Resource-Allocation Graph:
- V is partitioned into two types:
» T={T, T, ..., T}, the set threads in the system.
» R={Ry, Ry, .., Ry}, the set of resource types in system
- request edge - directed edge T; - R;
- assignment edge - directed edge R; > T;

2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.25

Methods for Handling Deadlocks

O

+ Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for forcibly preempting resources
and/or terminating tasks

- Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

- Ignore the problem and pretend that deadlocks
never occur in the system

- Used by most operating systems, including UNIX

2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.27

Page 7

Resource Allocation Graph Examples
+ Recall:
- request edge - directed edge T; » R;
- assignment edge - directed edge R; > T;

/
R1 Rz

N e

&))OI GO
\/ f \/ . ~

" w L ()
R4 S R, R,

Simple Resource

Allocation Graph
Allocation Graph

Allocation Graph
With Deadlock

With Cycle, but
No Deadlock

2/20/08 Lec 8.26

Joseph CS5162 ©UCB Spring 2008

Deadlock Detection Algorithm
* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm

- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each Type%:

[FreeResources]: Current free resources each type

[Request,] : Current requests from thread

[Allocy] : Current resources held by thread X
- See if tasks can eventually terminate on their own

[Avail] = [FreeResources]

Add all nodes to UNFINISHED

do {

done = true
Foreach node in UNFINISHED {
if ([Request, 4] <= [Availl]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,g.]
done = false
}

}
} until (done)

- Nodes left in UNFINISHED = deadlocked

2/20/08 Joseph C5162 ©UCB Spring 2008

Lec 8.28

What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer
- But, not always possible - killing a thread holding a
mutex leaves world inconsistent
+ Preempt resources without killing off thread
- Take away resources from thread temporarily
- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TiVo, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

- Many operating systems use other options
2/20/08 Joseph CS162 ©UCB Spring 2008

Lec 8.29

Techniques for Preventing Deadlock (con't)

* Make all threads request everything they'll need at
the beginning.
- Problem: Predicting future is hard, tend to over-
estimate resources
- Example:
» If need 2 chopsticks, request both at same time
» Don't leave home until we know no one is using any
intersection between here and where you want to go: only
one car on the Bay Bridge at a time
+ Force all threads to request resources in a particular
order preventing any cyclic use of resources

- Thus, preventing deadlock
- Example (x.P, y.P, z.P,.)
» Make tasks request disk, then memory, then..

» Keep from deadlock on freeways around SF by requiring
everyone to go clockwise
Joseph CS162 ©UCB Spring 2008

2/20/08 Lec 8.31

Page 8

Techniques for Preventing Deadlock

+ Infinite resources
- Include enough resources so that no one ever runs out of
resources. Doesn't have to be infinite, just large
- Give illusion of infinite resources (e.g. virtual memory)
- Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
*+ No Sharing of resources (totally independent threads)
- Not very realistic
+ Don't allow waiting
- How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

- Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry
- Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam,
suddenly you're “transported back home and told to retry!

2/20/08 Joseph CS5162 ©UCB Spring 2008 Lec 8.30

Banker's Algorithm for Preventing Deadlock

* Toward right idea:
- State maximum resource needs in advance
- Allow particular thread to proceed if:
(available resources - #requested) > max
remaining that might be needed by any thread
+ Banker's algorithm (less conservative):
- Allocate resources dynamically
» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
([Max,o4.]-[Alloc,ege] < [Avail]) for ([Request,,q.] < [Avail])
Grant request if result is deadlock free (conservativel!)

» Keeps system in a "SAFE" state, i.e. there exists a
sequence {T;, T,, .. T} with T; requesting all remaining
resources, finishing, then T, requesting all remaining
resources, efc..

- Algorithm allows the sum of maximum resource needs of all

current threads to be greater than total resources
2/20/08 Joseph 5162 ©UCB Spring 2008 Lec 8.32

Banker's Algorithm Example

5 Yo ' oY 1]

- Banker's algorithm with dining lawyers

- "Safe” (won't cause deadlock) if when try to grab
chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

- What if k-handed lawyers? Don't allow if:
» It's the last one, no one would have k
» It's 2" to last, and no one would have k-1
» It's 3rd to last, and no one would have k-2

F7
eadn (=, §

2/20/08 > - Joseph CS162 ©UCB Spring 2008 Lec 8.33

Summary (2)

+ Techniques for addressing Deadlock
- Allow system to enter deadlock and then recover
- Ensure that system will never enter a deadlock

- Ignore the problem and pretend that deadlocks never
occur in the system

- Deadlock detection

- Attempts to assess whether waiting graph can ever
make progress

* Next Time: Deadlock prevention

- Assess, for each allocation, whether it has the
potential to lead to deadlock

- Banker's algorithm gives one way to assess this

2/20/08 Joseph CS162 ©UCB Spring 2008 Lec 8.35

Page 9

Summary

+ Suggestions for dealing with Project Partners
- Start Early, Meet Often

- Develop Good Organizational Plan, Document Everything,
Use the right tools, Develop Comprehensive Testing Plan

- (Oh, and add 2 years to every deadlinel!)
- Starvation vs. Deadlock
- Starvation: thread waits indefinitely
- Deadlock: circular waiting for resources
* Four conditions for deadlocks
- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» 3 set {77, ..,_T;} of threads with a cyclic waiting pattern
2/20/08 Joseph C5162 ©UCB Spring 2008 Lec 8.34

