
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 10

Thread Scheduling

March 3, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 10.23/3/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Scheduling Policy goals

• Policy Options

• Implementation Considerations

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 10.33/3/08 Joseph CS162 ©UCB Spring 2008

CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to
Running to various waiting queues.

• Question: How is the OS to decide which of several
tasks to take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access
to resources from moment to moment

Lec 10.43/3/08 Joseph CS162 ©UCB Spring 2008

Scheduling Assumptions

• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the
problem so it can be solved
– For instance: is ―fair‖ about fairness among users or
programs?

» If I run one compilation job and you run five, you get five
times as much CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time

Page 2

Lec 10.53/3/08 Joseph CS162 ©UCB Spring 2008

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of
CPU and I/O
– Program typically uses the CPU for some period of time,
then does I/O, then uses CPU again

– Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU
before finishing current CPU burst

Weighted toward small bursts

Lec 10.63/3/08 Joseph CS162 ©UCB Spring 2008

Scheduling Policy Goals/Criteria

• Minimize Response Time
– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

Lec 10.73/3/08 Joseph CS162 ©UCB Spring 2008

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also ―First In, First Out‖ (FIFO) or ―Run until done‖
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300

Lec 10.83/3/08 Joseph CS162 ©UCB Spring 2008

FCFS Scheduling (Cont.)

• Example continued:
– Suppose that processes arrive in order: P2 , P3 , P1

Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of
small items. Upside: get to read about space aliens!

P1P3P2

63 300

Page 3

Lec 10.93/3/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Midterm #1– Mean 73.2, Std dev 12.8

• 30.0 - 35.0: 1 *
• 35.0 - 40.0: 1 *
• 40.0 - 45.0: 1 *
• 45.0 - 50.0: 0
• 50.0 - 55.0: 5 *****
• 55.0 - 60.0: 11 **********
• 60.0 - 65.0: 9 *********
• 65.0 - 70.0: 7 *******
• 70.0 - 75.0: 13 ************
• 75.0 - 80.0: 19 ******************
• 80.0 - 85.0: 22 ********************
• 85.0 - 90.0: 11 **********
• 90.0 - 95.0: 7 *******

Lec 10.103/3/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Course resources
– Staff office hours
– Peer tutoring (contact hkn@eecs)

• Project 1 code due tonight
– Conserve your slip days!!!
– It’s not worth it yet

• Group Participation: Required!
– Group evaluations (with TA oversight) used in computing
grades

– Zero-sum game!

Lec 10.113/3/08 Joseph CS162 ©UCB Spring 2008

Round Robin (RR)

• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you
don’t care who is behind you, on the other hand…

• Round Robin Scheme
– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch,
otherwise overhead is too high (all overhead)

Lec 10.123/3/08 Joseph CS162 ©UCB Spring 2008

Example of RR with Time Quantum = 20

• Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼

– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Page 4

Lec 10.133/3/08 Joseph CS162 ©UCB Spring 2008

Round-Robin Discussion

• How do you choose time slice?
– What if too big?

» Response time suffers
– What if infinite ()?

» Get back FIFO

– What if time slice too small?
» Throughput suffers!

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo

each keystroke!
– In practice, need to balance short-job performance
and long-job throughput:

» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Lec 10.143/3/08 Joseph CS162 ©UCB Spring 2008

Comparisons between FCFS and Round Robin

• Assuming zero-cost context-switching time, is RR
always better than FCFS?

• Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length

• Also: Cache state must be shared between all jobs with
RR but can be devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000

Lec 10.153/3/08 Joseph CS162 ©UCB Spring 2008

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2

[8]

P4

[24]

P1

[53]

P3

[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS

83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 10.163/3/08 Joseph CS162 ©UCB Spring 2008

What if we Knew the Future?

• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of
computation to do

– Sometimes called ―Shortest Time to
Completion First‖ (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

– Sometimes called ―Shortest Remaining Time to
Completion First‖ (SRTCF)

• These can be applied either to a whole program or
the current CPU burst of each program
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

Page 5

Lec 10.173/3/08 Joseph CS162 ©UCB Spring 2008

Discussion

• SJF/SRTF are the best you can do at minimizing
average response time

– Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

– Since SRTF is always at least as good as SJF, focus
on SRTF

• Comparison of SRTF with FCFS and RR
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

– What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

Lec 10.183/3/08 Joseph CS162 ©UCB Spring 2008

Example to illustrate benefits of SRTF

• Three jobs:

– A,B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

• With FIFO:
– Once A or B get in, keep CPU for two weeks

• What about RR or SRTF?

– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 10.193/3/08 Joseph CS162 ©UCB Spring 2008

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of

wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

Lec 10.203/3/08 Joseph CS162 ©UCB Spring 2008

SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: Even non-malicious users have trouble predicting
runtime of their jobs

• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

Page 6

BREAK

Lec 10.223/3/08 Joseph CS162 ©UCB Spring 2008

Predicting the Length of the Next CPU Burst

• Adaptive: Changing policy based on past behavior
– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

– For instance,
exponential averaging
n = tn-1+(1-)n-1
with (0<1)

Lec 10.233/3/08 Joseph CS162 ©UCB Spring 2008

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered ―foreground‖ tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)

• Adjust each job’s priority as follows (details vary)
– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to

Low Priority

Lec 10.243/3/08 Joseph CS162 ©UCB Spring 2008

Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

• Countermeasure: user action that can foil intent of
the OS designer
– For multilevel feedback, put in a bunch of meaningless
I/O to keep job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing
at higher priority the competitors.

» Put in printf’s, ran much faster!

Page 7

Lec 10.253/3/08 Joseph CS162 ©UCB Spring 2008

What about Fairness?

• What about fairness?
– Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):

» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

– Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

– Tradeoff: fairness gained by hurting avg response time!
• How to implement fairness?

– Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of
the other lines

– Could increase priority of jobs that don’t get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priority  Interactive jobs suffer
Lec 10.263/3/08 Joseph CS162 ©UCB Spring 2008

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of
tickets given to each job

• How to assign tickets?
– To approximate SRTF, short running jobs get more,
long running jobs get fewer

– To avoid starvation, every job gets at least one
ticket (everyone makes progress)

• Advantage over strict priority scheduling: behaves
gracefully as load changes
– Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
job possesses

Lec 10.273/3/08 Joseph CS162 ©UCB Spring 2008

Lottery Scheduling Example

• Lottery Scheduling Example

– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress

» One approach: log some user out

short jobs/

long jobs
% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%

Lec 10.283/3/08 Joseph CS162 ©UCB Spring 2008

How to Evaluate a Scheduling algorithm?

• Deterministic modeling
– takes a predetermined workload and compute the
performance of each algorithm for that workload

• Queuing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

Page 8

Lec 10.293/3/08 Joseph CS162 ©UCB Spring 2008

A Final Word on Scheduling

• When do the details of the scheduling policy and
fairness really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay
for itself in improved response time

» Assuming you’re paying for worse
response time in reduced productivity,
customer angst, etc…

» Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the ―linear‖
portion of the load curve, fail otherwise

– Argues for buying a faster X when hit ―knee‖ of curve

Utilization

R
e
sp

onse
tim

e 1
0
0
%

Lec 10.303/3/08 Joseph CS162 ©UCB Spring 2008

Summary (Deadlock)

• Four conditions required for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
»  set {T1, …, Tn} of threads with a cyclic waiting pattern

• Deadlock detection
– Attempts to assess whether waiting graph can ever
make progress

• Deadlock prevention
– Assess, for each allocation, whether it has the potential
to lead to deadlock

– Banker’s algorithm gives one way to assess this

Lec 10.313/3/08 Joseph CS162 ©UCB Spring 2008

Summary (Scheduling)

• Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

• FCFS Scheduling:
– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs
– Cons: Poor when jobs are same length

Lec 10.323/3/08 Joseph CS162 ©UCB Spring 2008

Summary (Scheduling 2)

• Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
– Run whatever job has the least amount of computation
to do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasks  more tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

