
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 11

Protection: Address Spaces

March 5, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 11.23/5/08 Joseph CS162 ©UCB Spring 2008

Review

• Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

• FCFS Scheduling:
– Run threads to completion in order of submission

– Pros: Simple (+)

– Cons: Short jobs get stuck behind long ones (-)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

– Pros: Better for short jobs (+)

– Cons: Poor when jobs are same length (-)

Lec 11.33/5/08 Joseph CS162 ©UCB Spring 2008

Review

• Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
– Run whatever job has the least amount of computation
to do/least remaining amount of computation to do

– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities
– Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

• Lottery Scheduling:
– Give each thread a priority-dependent number of
tokens (short tasksmore tokens)

– Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

• Evaluation of mechanisms:
– Analytical, Queuing Theory, Simulation

Lec 11.43/5/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Kernel vs User Mode

• What is an Address Space?

• How is it Implemented?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Page 2

Lec 11.53/5/08 Joseph CS162 ©UCB Spring 2008

Virtualizing Resources

• Physical Reality:
Different Processes/Threads share the same hardware
– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (Today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

– Consequently, cannot just let different threads of control
use the same memory

» Physics: two different pieces of data cannot occupy the same
locations in memory

– Probably don’t want different threads to even have access
to each other’s memory (protection)

Lec 11.63/5/08 Joseph CS162 ©UCB Spring 2008

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency

– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system

– “Passive” component of a process

Lec 11.73/5/08 Joseph CS162 ©UCB Spring 2008

Important Aspects of Memory Multiplexing

• Controlled overlap:
– Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when
desired (for communication)

• Translation:
– Ability to translate accesses from one address space
(virtual) to a different one (physical)

– When translation exists, processor uses virtual
addresses, physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves

Lec 11.83/5/08 Joseph CS162 ©UCB Spring 2008

Binding of Instructions and Data to Memory
• Binding of instructions and data to addresses:

– Choose addresses for instructions and data from the
standpoint of the processor

– Could we place data1, start, and/or checkit at
different addresses?

» Yes
» When? Compile time/Load time/Execution time

– Related: which physical memory locations hold particular
instructions or data?

data1: dw 32

…

start: lw r1,0(data1)

jal checkit

loop: addi r1, r1, -1

bnz r1, r0, loop
…

checkit: …

0x300 00000020

… …

0x900 8C2000C0

0x904 0C000340

0x908 2021FFFF

0x90C 1420FFFF

…

0xD00 …

Page 3

Lec 11.93/5/08 Joseph CS162 ©UCB Spring 2008

Multi-step Processing of a Program for Execution

• Preparation of a program for
execution involves components at:
– Compile time (i.e. “gcc”)
– Link/Load time (unix “ld” does link)
– Execution time (e.g. dynamic libs)

• Addresses can be bound to final
values anywhere in this path
– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to
locate the appropriate memory-
resident library routine

– Stub replaces itself with the
address of the routine, and
executes routine

Lec 11.103/5/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Midterm #1
– Solution with grading guidelines posted
– Midterms will be returned Thursday and Friday
– Regrade request deadline is next Friday (3/14)

• Project 2 started yesterday
– Design doc due next Monday (3/10)
– Code due Thursday 3/20

Lec 11.113/5/08 Joseph CS162 ©UCB Spring 2008

Recall: Uniprogramming

• Uniprogramming (no Translation or Protection)

– Application always runs at same place in physical
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving
it reality of a dedicated machine

• Of course, this doesn’t help us with multithreading

0x00000000

0xFFFFFFFF

Application

Operating
System

V
a
li
d
 3

2
-
b
it

A
d
d
re

ss
e
s

Lec 11.123/5/08 Joseph CS162 ©UCB Spring 2008

Multiprogramming (First Version)

• Multiprogramming without Translation or Protection
– Must somehow prevent address overlap between threads

– Trick: Use Loader/Linker: Adjust addresses while
program loaded into memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

• With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

Page 4

Lec 11.133/5/08 Joseph CS162 ©UCB Spring 2008

Multiprogramming (Version with Protection)

• Can we protect programs from each other without
translation?

– Yes: use two special registers BaseAddr and LimitAddr
to prevent user from straying outside designated area

» If user tries to access an illegal address, cause an error

– During switch, kernel loads new base/limit from TCB
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

Lec 11.143/5/08 Joseph CS162 ©UCB Spring 2008

Segmentation with Base and Limit registers

• Could use base/limit for dynamic address translation
(often called “segmentation”):
– Alter address of every load/store by adding “base”
– User allowed to read/write within segment

» Accesses are relative to segment so don’t have to be
relocated when program moved to different segment

– User may have multiple segments available (e.g x86)
» Loads and stores include segment ID in opcode:

x86 Example: mov [es:bx],ax.
» Operating system moves around segment base pointers as

necessary

DRAM

<?

+

Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

Lec 11.153/5/08 Joseph CS162 ©UCB Spring 2008

Issues with simple segmentation method

• Fragmentation problem

– Not every process is the same size

– Over time, memory space becomes fragmented

• Hard to do inter-process sharing

– Want to share code segments when possible

– Want to share memory between processes

– Helped by by providing multiple segments per process

• Need enough physical memory for every process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 6

process 5

process 9

OS

process 9

process 10

Lec 11.163/5/08 Joseph CS162 ©UCB Spring 2008

Multiprogramming (Translation and Protection version 2)

• Problem: Run multiple applications in such a way that
they are protected from one another

• Goals:
– Isolate processes and kernel from one another
– Allow flexible translation that:

» Doesn’t lead to fragmentation
» Allows easy sharing between processes
» Allows only part of process to be resident in physical

memory

• (Some of the required) Hardware Mechanisms:
– General Address Translation

» Flexible: Can fit physical chunks of memory into arbitrary
places in users’ address spaces

» Not limited to small number of segments
» Think of this as providing a large number (thousands) of

fixed-sized segments (called “pages”)
– Dual Mode Operation

» Protection base involving kernel/user distinction

Page 5

Lec 11.173/5/08 Joseph CS162 ©UCB Spring 2008

Example of General Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
Lec 11.183/5/08 Joseph CS162 ©UCB Spring 2008

Two Views of Memory

• Recall: Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently: two views of memory:
– View from the CPU (what program sees, virtual memory)
– View fom memory (physical memory)
– Translation box converts between the two views

• Translation helps to implement protection
– If task A cannot even gain access to task B’s data, no
way for A to adversely affect B

• With translation, every program can be linked/loaded
into same region of user address space
– Overlap avoided through translation, not relocation

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

Lec 11.193/5/08 Joseph CS162 ©UCB Spring 2008

Example of Translation Table Format

Two-level Page Tables

32-bit address:

P1 index P2 index page offset

10 10 12

4 bytes

4 bytes

4KB

1K
PTEs

• Page: a unit of memory translatable by
memory management unit (MMU)
– Typically 1K – 8K

• Page table structure in memory
– Each user has different page table

• Address Space switch: change pointer
to base of table (hardware register)
– Hardware traverses page table (for
many architectures)

– MIPS uses software to traverse table

BREAK

Page 6

Lec 11.213/5/08 Joseph CS162 ©UCB Spring 2008

Dual-Mode Operation

• Can Application Modify its own translation tables?
– If it could, could get access to all of physical memory
– Has to be restricted somehow

• To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only
accessible in kernel-mode

• Intel processor actually has four “rings” of
protection:
– PL (Priviledge Level) from 0 – 3

» PL0 has full access, PL3 has least
– Privilege Level set in code segment descriptor (CS)
– Mirrored “IOPL” bits in condition register gives
permission to programs to use the I/O instructions

– Typical OS kernels on Intel processors only use PL0
(“kernel”) and PL3 (“user”)

Lec 11.223/5/08 Joseph CS162 ©UCB Spring 2008

For Protection, Lock User-Programs in Asylum
• Idea: Lock user programs in padded cell

with no exit or sharp objects
– Cannot change mode to kernel mode
– User cannot modify page table mapping
– Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memory-mapped I/O operations
(I/O that occurs by reading/writing memory locations)

– Limited access to interrupt controller
– What else needs to be protected?

• A couple of issues
– How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

– How do programs interact?
– How does one switch between kernel and user modes?

» OS  user (kernel  user mode): getting into cell
» User OS (user  kernel mode): getting out of cell

Lec 11.233/5/08 Joseph CS162 ©UCB Spring 2008

How to get from KernelUser

• What does the kernel do to create a new user
process?

– Allocate and initialize address-space control block

– Read program off disk and store in memory

– Allocate and initialize translation table
» Point at code in memory so program can execute

» Possibly point at statically initialized data

– Run Program:
» Set machine registers

» Set hardware pointer to translation table

» Set processor status word for user mode

» Jump to start of program

• How does kernel switch between processes?

– Same saving/restoring of registers as before

– Save/restore PSL (hardware pointer to translation table)
Lec 11.243/5/08 Joseph CS162 ©UCB Spring 2008

UserKernel (System Call)

• Can’t let inmate (user) get out of padded cell on own
– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled UserKernel transition
– Can any kernel routine be called?

» No! Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel

Page 7

Lec 11.253/5/08 Joseph CS162 ©UCB Spring 2008

System Call Continued

• What are some system calls?
– I/O: open, close, read, write, lseek
– Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
– Process: fork, exit, wait (like join)
– Network: socket create, set options

• Are system calls constant across operating systems?
– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel mem

» User addresses must be translated!w
» Kernel has different view of memory than user

– Every Argument must be explicitly checked!
Lec 11.263/5/08 Joseph CS162 ©UCB Spring 2008

UserKernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions:
– Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU
state, and switches to kernel stack

Lec 11.273/5/08 Joseph CS162 ©UCB Spring 2008

Additions to MIPS ISA to support Exceptions?

• Exception state is kept in “Coprocessor 0”
– Use mfc0 read contents of these registers:

» BadVAddr (register 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

• Status Register fields:
– Mask: Interrupt enable

» 1 bit for each of 5 hardware and 3 software interrupts
– k = kernel/user: 0kernel mode
– e = interrupt enable: 0interrupts disabled
– Exception6 LSB shifted left 2 bits, setting 2 LSB to 0:

» run in kernel mode with interrupts disabled

Status

15 8 5 4 3 2 1 0

k e k e k eMask
old prev cur

Lec 11.283/5/08 Joseph CS162 ©UCB Spring 2008

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers

Page 8

Lec 11.293/5/08 Joseph CS162 ©UCB Spring 2008

Communication

• Now that we have isolated processes, how
can they communicate?
– Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate

» Note that processes A and B can talk to shared memory
through different addresses

» In some sense, this violates the whole notion of
protection that we have been developing

– If address spaces don’t share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message passing (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared state!
Lec 11.303/5/08 Joseph CS162 ©UCB Spring 2008

Closing thought: Protection without Hardware

• Does protection require hardware support for
translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express
program that would trash another program

– Loader needs to make sure that program produced by
valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior
(loads and stores recompiled on fly to check bounds)

Lec 11.313/5/08 Joseph CS162 ©UCB Spring 2008

Summary

• Memory is a resource that must be shared
– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical
Addresses

– Protection: Prevent unauthorized Sharing of resources
• Simple Protection through Segmentation

– Base+limit registers restrict memory accessible to user
– Can be used to translate as well

• Full translation of addresses through Memory
Management Unit (MMU)
– Every Access translated through page table
– Changing of page tables only available to kernel

• Dual-Mode
– Kernel/User distinction: User restricted
– UserKernel: System calls, Traps, or Interrupts
– Inter-process communication: shared memory, or
through kernel (system calls)

