CS162
Operating Systems and
Systems Programming
Lecture 11

Protection: Address Spaces

March 5, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Review

+ Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
- Run whatever job has the least amount of computation
to do/least remaining amount of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair
* Multi-Level Feedback Scheduling:
- Multiple queues of different priorities

- Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

* Lottery Scheduling:

- Give each thread a priority-dependent number of
tokens (short tasks=more tokens)

- Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

+ Evaluation of mechanisms:
- Analytical, Queuing Theory, Simulation

3/5/08 Joseph CS162 ©UCB Spring 2008 Lec 11.3

Page 1

Review

* Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

+ FCFS Scheduling:
- Run threads to completion in order of submission
- Pros: Simple (+)
- Cons: Short jobs get stuck behind long ones (-)
* Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

- Pros: Better for short jobs (+)
- Cons: Poor when jobs are same length (-)

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.2

Goals for Today

* Kernel vs User Mode
* What is an Address Space?
* How is it Implemented?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.4

Virtualizing Resources

+ Physical Reality:
Different Processes/Threads share the same hardware
- Need to multiplex CPU (Just finished: scheduling)
- Need to multiplex use of Memory (Today)
- Need to multiplex disk and devices (later in term)
* Why worry about memory sharing?
- The complete working state of a process and/or kernel is
defined by its data in memory (and registers)
- Consequently, cannot just let different threads of control
use the same memory
» Physics: two different pieces of data cannot occupy the same
locations in memory
- Probably don't want different threads to even have access

to each other's memor! gpro'rection)
/08 162 ©UCB Spring 2008

Joseph C. Lec11.5

3/5

Important Aspects of Memory Multiplexing

+ Controlled overlap:
- Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!
- Conversely, would like the ability to overlap when
desired (for communication)
* Translation:
- Ability to translate accesses from one address space
(virtual) to a different one (physical)
- When translation exists, processor uses virtual
addresses, physical memory uses physical addresses
- Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

* Protection:
- Prevent access to private memory of other processes
» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).
» Kernel data protected from User programs

» Programs protected from themselves

3/5/08 Joseph CS162 ©UCB Spring 2008 Lec 11.7

Page 2

Recall: Single and Multithreaded Processes

[code H data ” files J I code H data H files J

T T
registers ||| registers ||| registers
stack stack stack

thread —» é ; ; ;«—-— thread

multithreaded process

{reglbtersl [stack }

single-threaded process

* Threads encapsulate concurrency
- "Active” component of a process
* Address spaces encapsulate protection
- Keeps buggy program from trashing the system

- "Passive” component of a process
3/5/08 Joseph C5162 ©UCB Spring 2008

Lec 11.6

Binding of Instructions and Data to Memory

+ Binding of instructions and data to addresses:

- Choose addresses for instructions and data from the
standpoint of the processor

datal: dw 32 0x300, 00000020

start: 1w rl,0(datal) 0x900 8C2000cCO0
jal checkit 0x904 OC

loop: addi rl, rl, -1

0x908 20/ FFFF
bnz rl, r0, loop 0x90C 20FFFF
checkit: .. Ox

- Could we place datal, start, and/or checkit at
different addresses?
» Yes
» When? Compile time/Load time/Execution time
- Related: which physical memory locations hold particular
instructions or data?

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.8

Multi-step Processing of a Program for Execution

* Preparation of a program for
execution involves components at:
- Compile time (i.e. "gcc”)
- Link/Load time (unix “Id” does link)
- Execution time (e.g. dynamic libs)
* Addresses can be bound to final
values anywhere in this path
- Depends on hardware support
- Also depends on operating system
- Dynamic Libraries
- Linking postponed until execution

- Small piece of code, stub, used to
locate the appropriate memory-
resident library routine

- Stub replaces itself with the

source
program

compiler or
assembler

object
module

linkage
editor

load
module

loader

system
library

dynamicall

compile
time

load
time

address of the routine, and Sysem
executes routine ey inmemory } xscuio
dynamic binary time (run
linking memory time)
3/5/08 Joseph CS162 ©UCB Spring 2 fnage

Recall: Uniprogramming

* Uniprogramming (no Translation or Protection)

- Application always runs at same place in physical
memory since only one application at a time

- Application can access any physical address

. OxFFFFFFFF
Operating
System _‘-'g @
o 9
™ §
o3
s<
>
Application
0x00000000

- Application given illusion of dedicated machine by giving

it reality of a dedicated machine
+ Of course, this doesn't help us with multithreading

3/5/08 Joseph C5162 ©UCB Spring 2008

Lec 11.11

Page 3

Administrivia

* Midterm #1
- Solution with grading guidelines posted
- Midterms will be returned Thursday and Friday
- Regrade request deadline is next Friday (3/14)

* Project 2 started yesterday
- Design doc due next Monday (3/10)
- Code due Thursday 3/20

3/5/08 Joseph €5162 ©UCB Spring 2008 Lec 11.10

Multiprogramming (First Version)

* Multiprogramming without Translation or Protection
- Must somehow prevent address overlap between threads

. OxFFFFFFFF
Operating
System
Application2 | 0x00020000
Applicationl
0x00000000

- Trick: Use Loader/Linker: Adjust addresses while
program loaded into memory (loads, stores, jumps)
» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

* With this solution, no protection: bugs in any pr‘g%r'am

can cause other programs to crash or even the

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.12

Multiprogramming (Version with Protection)

* Can we protect programs from each other without
translation?

OxXFFFFFFFF
Operating
System «—]LimitAddr=0x10000]
Application2 | 0x00020000+————BaseAddr=0x20000]
Applicationl
0x00000000

- Yes: use two special registers BaseAddr and LimitAddr
to prevent user from sfraying outside designated area

» If user tries to access an illegal address, cause an error
- During switch, kernel loads new base/limit from TCB
» User not allowed to change base/limit registers

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.13
Issues with simple segmentation method
process 6 process 6 process 6 process 6 ‘
1
process 5 process 5 process 5 process 5
process 9 process 9
process 2 —> —> —> process 10
os oS os os
1

+ Fragmentation problem

- Not every process is the same size

- Over time, memory space becomes fragmented
* Hard to do inter-process sharing

- Want to share code segments when possible

- Want to share memory between processes

- Helped by by providing multiple segments per process
+ Need enough physical memory for every process

3/5/08 Joseph CS162 ©UCB Spring 2008 Lec 11.15

Page 4

Segmentation with Base and Limit registers

Base
Virtual »é
Address
CPU + DRAM
[ov] e o
Limit Address
No: Error!

+ Could use base/limit for dynamic address translation
(often called “"segmentation”):
- Alter address of every load/store by adding "base”
- User allowed to read/write within segment
» Accesses are relative to segment so don't have to be
relocated when program moved to different segment
- User may have multiple segments available (e.g x86)

» Loads and stores include segment ID in opcode:
x86 Example: mov [es:bx],ax.

» Operating system moves around segment base pointers as

necessary

3/5/08 Joseph €5162 ©UCB Spring 2008 Lec 11.14

Multiprogramming (Translation and Protection version 2)

* Problem: Run multiple applications in such a way that
they are protected from one another
* Goals:
- Isolate processes and kernel from one another
- Allow flexible translation that:
» Doesn't lead to fragmentation
» Allows easy sharing between processes
» Allows only part of process to be resident in physical
memory
+ (Some of the required) Hardware Mechanisms:
- General Address Translation

» Flexible: Can fit physical chunks of memory into arbitrary
places in users’ address spaces

» Not limited to small number of segments

» Think of this as providing a large number (thousands) of
fixed-sized segments (called “pages”)

- Dual Mode Operation
» Protection base involving kernel/user distinction

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.16

Example of General Address Translation

Two Views of Memory

Virtual
ddr‘ess MMU
N— |:

Untranslated read or write

* Recall: Address Space:
- All the addresses and state a process can touch
- Each process and kernel has different address space
- Consequently: two views of memory:
- View from the CPU (what program sees, virtual memory)
- View fom memory (physical memory)
- Translation box converts between the two views
* Translation helps to implement protection
- If task A cannot even gain access to task B's data, no
way for A to adversely affect B
* With translation, every program can be linked/loaded
into same region of user address space

- Overlap avoided through translation, not relocation
3/5/08 Joseph €ST62 ©UCB Spring 2008 Lec 11.18

Physical

Code Data 2 Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Prog 1 Prog 2
Virtual Data ! Virtual
Address Heap 2 Address
Space 1 Code 2 Space 2
/ OS code \
Translation Map 1 OSdata | Translation Map 2
0S heap &
Stacks
Physical Address Space
3/5/08 Jdseph 5162 ®UCB Spring 2008 Lec 11.17
Example of Translation Table Format .

Two-level Page Tables
32-bit address:

12
l Plindex] P2index l pageoffsetl

—* 4 bytes+—

* Page: a unit of memory translatable by
memory management unit (MMU)
- Typically 1K - 8K
* Page table structure in memory
- Each user has different page table
* Address Space switch: change pointer . ;pj e
to base of table (hardware register) H

- Hardware traverses page table (for
many architectures)

- MIPS uses software to traverse table
3/5/08 Joseph C5162 ®UCB Spring 2008 Lec 11.19

BREAK

Dual-Mode Operation

+ Can Application Modify its own translation tables?
- If it could, could get access to all of physical memory
- Has to be restricted somehow
* To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode (Normal program mode)
- Mode set with bits in special control register only
accessible in kernel-mode
- Intel processor actually has four “rings” of
protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)

- Mirrored “"IOPL" bits in condition reaisfer ives
permission to programs to use the I70 insfructions

- (“lpical OS kernels on Intel processors only use PLO

ernel”) and PL3 (“user”)
3/5/08 Joseph C5162 ©UCB Spring 2008

Lec 11.21

How to get from Kernel—»User
+ What does the kernel do to create a new user
process?
- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
+ How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore PSL (hardware pointer to translation table)
3/5/08 Joseph CS162 ©UCB Spring 2008 Lec 11.23

Page 6

For Protection, Lock User-Programs in Asylum
- Idear LocK user programs in padded cell _a
with no exit or sﬂarp objects R
- Cannot change mode to kernel mode By
- User cannot modify page table mapping N\~
- Limited access to memory: cannot SO
adversely effect other processes

» Side-effect: Limited access to
memorz-mapped I/0 operations
(I/0 that occurs by reading/writing memory locations)

- Limited access to interrupt controller
- What else needs to be protected?
* A couple of issues
- How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

- How do programs interact?
- How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell

» User— OS (user — kernel mode): geﬂing out of cell
3/5/08 Joseph €5162 ©UCB Spring 2008 Lec 11.22

User—Kernel (System Call)

+ Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

user process
user mode
(mode bit = 1)

‘ user process executing H calls system call ‘

\ vi

‘ return from system call ‘

AY 7
K 1 trap return
ene mode bit = 0 mode bit = 1

execute system call

+ System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

kernel mode
(mode bit = 0)|

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.24

System Call Continued

* What are some system calls?
- I/0: open, close, read, write, Iseek
- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)
- Network: socket create, set options
* Are system calls constant across operating systems?
- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)
* What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
+ System Call argument passing:
- In registers (not very much can be passed)
- Write into user memory, kernel copies into kernel mem
» User addresses must be translatedlw
» Kernel has different view of memory than user
- Every Argument must be explicitly checked!
3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.25

User—Kernel (Exceptions: Traps and Interrupts)
+ A system call insfruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
- Other sources of Synchronous Exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
+ Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, efc.

* Actual handler typically saves registers, other CPU
usitate. and switches 39 kepnel, stagk

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in “"Coprocessor 0"
- Use mfcO read contents of these registers:

» BadVAddr ér‘egister‘ 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction
15 8 543210
Status | | Mask | [k[e[k]e]k]e]

old prev cur

- Status Register fields:
- Mask: Interrupt enable
» 1 bit for each of 5 hardware and 3 software interrupts
- k = kernel/user: O=kernel mode
- e = interrupt enable: O=interrupts disabled
- Exception=6 LSB shifted left 2 bits, setting 2 LSB to O:
» run in kernel mode with interrupts disabled
3/5/08 Joseph €5162 ®UCB Spring 2008 Lec 11.27

Intel x86 Special Registers
80386 Special Registers
Scgiment legistels
| |Cnd= Seg. | |D.ms-,-g
15 CcE s} 15 Ds s}
| |su k Seg. | Extla Seg.
15 55 s} 15 ES s}
. | e, | et
15 S o 15 Gs o
N| 10 olD|L|T Z 4 B £
XIT|EBL [F|F|E[F E[X|F|X|[F|X|F
RPL =Requestor Privilege Level 15 1413 1211 10 9 8 6 5 + 3 2 10
TL=Table Indicater
i gt I E|T|T P
ld.:[O—TL(:cDT': L_lL:ITE] |G| |T Ff M|E|cno | Uniosed |cm
hdex =Thdex into table 3130 S 43210 31 OFlags
3 B Fanl B Dr I
gl Sk el il e [FERE [es
H H 31 o 3 7 o
Typical Segment Register T—— heRoene
Lo = e
Current Priority is RPL TS Tank Swhed OBt arg !
M Brblan Coprosmiin. DE—Ditection Flag
o e
Of Code Segment (¢s) BEProteciod Mode chibie ey
SE=Sign Elag
ZE=Zelo Flag
‘AF=auziliary Flag
PEPary ths
A =Cany flag
3/5/08 Joseph C5162 ®UCB Spring 2008 Lec 11.28

Page 7

Communication

* Now that we have isolated processes, how >

can they communicate? K

- Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate

» Note that ‘?rocesses A and B can talk to shared memory
through different addresses

» In some sense, this violates the whole notion of
protection that we have been developing

- If address spaces don't share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message Eassing (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared statel

3/5/08 Joseph C5162 ©UCB Spring 2008 Lec 11.29

Summary

* Memory is a resource that must be shared
- Controlled Overlap: only shared when appropriate

- Translation: Change Virtual Addresses into Physical
Addresses

- Protection: Prevent unauthorized Sharing of resources
- Simple Protection through Segmentation

- Base+limit registers restrict memory accessible to user

- Can be used to translate as well

* Full translation of addresses through Memory
Management Unit (MMU)

- Every Access translated through page table
- Changing of page tables only available to kernel
* Dual-Mode
- Kernel/User distinction: User restricted
- User—Kernel: System calls, Traps, or Interrupts

- Inter-ﬁr‘ocess communication: shared memory, or
through kernel (system calls)

3/5/08 Joseph C5162 ©UCB Spring 2008

Lec 11.31

Page 8

Closing thought: Protection without Hardware

+ Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict programming language so that you can't express
program that would grosh another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, etc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guaran*ree safe behavior

(loads and stores recompiled on fly to check bounds)
08 Joseph C5162 ©UCB Spring 2008 Lecl

3/5/ 1.30

