CS162
Operating Systems and
Systems Programming
Lecture 12

Address Translation

March 10, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Review: General Address Translation

Code Data 2 Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Prog 1 Prog 2
Virtual Data 1 Virtual
Address Heap 2 Address
Space 1 Code 2 Space 2
/ OS code \
Translation Map 1 OSdata |  Translation Map 2
0S heap &
Stacks

Phtxsical Address Space
J

3/10/08 eph CS162 ©UCB Spring 2008

Lec 12.3

Page 1

Review: Important Aspects of Memory Multiplexing

+ Controlled overlap:
- Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!
- Conversely, would like the ability to overlap when
desired (for communication)
* Translation:
- Ability to translate accesses from one address space
(virtual) to a different one (physical)
- When translation exists, processor uses virtual
addresses, physical memory uses physical addresses
- Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs
* Protection:
- Prevent access to private memory of other processes
» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, efc).
» Kernel data protected from User programs

» Programs protected from themselves
3/10/08 Joseph CS5162 ©UCB Spring 2008 Lec 12.2

Goals for Today

+ Address Translation Schemes
- Segmentation
- Paging
- Multi-level translation
- Paged page tables
- Inverted page tables
+ Comparison among options

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
3/10/08 Joseph 5162 ©UCB Spring 2008 Lec 12.4




Review: Simple Segmentation: Base and Bounds (CRAY-1)

Base
Virtual
Address
CPU DRAM
[ov ] o el
Limit Address
Yes: Error!

+ Can use base & bounds/limit for dynamic address
translation (Simple form of “segmentation”):
- Alter every address by adding “base”
- Generate error if address bigger than limit
* This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
- Program gets continuous region of memory

- Addresses within program do not have to be relocated
when program placed in different region of DRAM

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 12,5

Cons for Simple Segmentation Method
- Frdgmentation problem (complex memory alfocation)
- Not every process is the same size
- Over time, memory space becomes fragmented
- Really bad if want space to grow dynamically (e.g. heap)

process 6 process 6 ‘ process 6 process 6
1
process 5 process 5 process 5 process 5
process 9 process 9
process 2 |:> |:> ':> process 10
os oS os oS

* Other problems for process maintenance
- Doesn't allow heap and stack to grow independently

- Want to put these as far apart in virtual memory space
as possible so that they can grow as needed

* Hard to do inter-process sharing
- Want to share code segments when possible

- Want to share memory between processes

3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 12.7

Page 2

Base and Limit segmentation discussion

* Provides level of indirection
- OS can move bits around behind program's back

- Can be used to correct if program needs to grow
beyond its bounds or coalesce fragments of memory

*+ Only OS gets to change the base and limit!
- Would defeat protection
* What gets saved/restored on a context switch?
- Everything from before + base/limit values
- Or: How about complete contents of memory (out to
disk)?
» Called “Swapping”
* Hardware cost
- 2 registers/Adder/Comparator

- Slows down hardware because need to take time to do
add/compare on every access

+ Base and Limit Pros: Simple, relatively fast

3/10/08 Joseph €5162 ©UCB Spring 2008 Lec 12.6
More Flexible Segmentation
y . 1
V oy o Y 4
(/ L .
— 2
Sqrt
\ 3
\» // user view of physical
s memory space memory space :

+ Logical View: multiple separate segments™
- Typical: Code, Data, Stack
- Others: memory sharing, etc

+ Each segment is given region of contiguous memory

- Has a base and limit

3/10/55€aN reside anywhere in physical memory

Lec 12.8




Implementation of Multi-Segment Model
Xdlg:‘lgls ISeg #l Offset ,' > Error

BaseO[LimitO[V
Basel|Limit1

{Base 12|V
ase imit.

Base4|Limit4|V

N

N

Physical
Address

Base5 | Limith
Base6 | Limité6
Base7 | Limit7 [V

+ Segment map resides in processor
- Segment number mapped into base/limit pair
- Base added to offset to generate physical address
- Error check catches offset out of range
+ As many chunks of physical memory as entries
- Segment addressed by portion of virtual address
- However, could be included in instruction instead:
» x86 ExomPIe: mov [es:bx],ax.
* What is "V/N"?
- Can mark segments as invalid; requires check as well
3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 12.9

Example: Four Segments (16 bit addresses)

Seg ID # | Base Limit
0 (code) | 0x4000 | 0x0800
1 (data) | 0x4800 |0x1400
2 (shared) | 0xFOOO | 0x1000

|Seg] Offset |
151413 [o]
Virtual Address Format

3 (stack) | 0x0000 | 0x3000
0x0000 0x0000
Might
4 -5
0x4000 8:2388 be shared
0x5€00
0x8000
Space for
0xC000 Other Apps
0xFO00 Shared with
Other Apps
Virtual Physical PP
Address Space Address Space
3/10/08 Joseph €S162 ®UCB Spring 2008 Lec 12.11

Page 3

Administrivia

* Project 2
- Initial Design Document due today (3/10) at 11:59pm
- Look at the lecture schedule to keep up with due dates!

* Midterm #1 re-grade requests due by Friday at 5pm
- Entire exam will be re-graded

3/10/08 Joseph €5162 ©UCB Spring 2008 Lec 12.10

Example of segment translation

0x240 main: la $a0, varx

0x244 jal strlen Seg ID # | Base Limit

0 (code) | Ox4000 | 0x0800

0x360 strlen: 1i $v0, 0 ;count

0x364 loop: 1b  $t0, (%a0) 1 (data) 0x4800 | 0x1400

0x368 beq $r0,$tl, done 2 (shared) | 0xFOOO | 0x1000

3 (stack) | 0x0000 | 0x3000

0x4050 varx dw 0x314159

Let's simulate a bit of this code to see what happens (PC=0x240):

+ Fetch 0x240. Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch 0x244. Translated to Physical=-0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch 0x360. Translated to Physical=-0x4360. Get "li $v0,0"
Move 0x0000 — $vO, Move PC+4—PC

4. Fetch 0x364. Translated to Physical=0x4364. Get “Ib $t0,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual seamenf #? 1. Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,
Load Byte from 0x4850—$t0, Move PC+4—PC

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 12.12




Observations about Segmentation

* Virtual address space has holes
- Segmentation efficient for sparse address spaces

- A correct program should never address gaps (except
as mentioned in moment)

» If it does, trap to kernel and dump core
* When it is OK to address outside valid range:
- This is how the stack and heap are allowed to grow

- For instance, stack takes fault, system automatically
increases size of stack

* Need protection mode in segment table
- For example, code segment would be read-only
- Data and stack would be read-write (stores allowed)
- Shared segment could be read-only or read-write

* What must be saved/restored on context switch?
- Segment table stored in CPU, not in memory (small)
- Might store all of processes memory onto disk when

switched (called “swapping”)

3/10/08 Joseph C5162 ©UCB Spring 2008

Lec 12.13

Paging: Physical Memory in Fixed Size Chunks

+ Problems with segmentation?

- Must fit variable-sized chunks into physical memory

- May move processes multiple times to fit everything

- Limited options for swapping to disk
 Fragmentation: wasted space

- External: free gaps between allocated chunks

- Internal: don't need all memory within allocated chunks
- Solution to fragmentation from segments?

- Allocate physical memory in fixed size chunks ("pages”)

- Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memo
I:c\llgcated, Opz?rze paY Y

+ Should pages be as big as our previous segments?
- No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)

- Consequently: need mulﬁgle pages/segment
3/10/08 Joseph CS162 ©UCB Spring 2008

Lec 12.15

Page 4

Schematic View of Swapping

process P,

process P,

| user

space backing store

- Extreme form of Context Switch: Swapping

- In order to make room for next process, some or all
of the previous process is moved to disk

» Likely need to send out complete segments
- This greatly increases the cost of context-switching
+ Desirable alternative?

- Some way to keep only active portions of a process in
memory at any one time

- Need finer granularity control over physical memory
3/10/08 Joseph €5162 ©UCB Spring 2008 Lec 12.14

How to Implement Paging?
Virtual Address: [ "'T"a# Offset |

page #OJ VR | ,

#1 = :
:::: 2 VR W Physical Address
page #3 |V.R.WM \Pheck Pern|
page #4 | N
page #5 V.R.W

PageTableSize

Access
Error
+ Page Table (One per process)
- Resides in physical memor;}l
- Contains physical page and permission for each virtual page
» Permissions include: Valid bits, Read, Write, etc
+ Virtual address mapping
- Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
- Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

- Check Page Table bounds and permissions
3/10/08 Joseph C5162 ©UCB Spring 2008

Access
Error

Lec 12.16




What about Sharing?

Virtual Address [ViFraat
(Process A): lﬂm

|PageTob!eP1'r‘A'h page #0

PageTablePirB

Virtual Address:
Process B

3/10/08

V.R |

page #1

page #3
page #4 | N
page #5 |V .RW

page #0 | V,R
age #1 . .
Eage 72 VAW This physical page
A A appears in address

— P space of both processes
page #5 [V R W

Joseph C5162 ©UCB Spring 2008 Lec 12.17

BREAK

Page 5

Simple Page Table Discussion

* What needs to be switched on
a context SW“’C"\?

0x00 H 0x00[—] - Page table pointer and limit
@ 0x04 * Analysis
oxosbg] [+ j| i - Pros
E k » Simple memory allocation
f [T oxo08 |- » Easy to Share
g { - Con: What if address space is
i 0x08Lh] Page ouocled] sparse?
i j | Table £l » E.g. on UNIX, code starts at
k 9 3/ sga;:llé starts at (CZI-";-I)il
1| » Wit ages, need 4 million
Virtual 0x10 + page Tablg gnh‘ies!
Memory ° - Con: What if table really big?
; » Not all pages used all the
Phusical time = would be nice to have
ysical : working set of page table in
Memory : memory

Example (4 byte pages) How about combining paging

and segmentation?
3/10/08 Joseph CS5162 ©UCB Spring 2008 Lec 12.18

Multi-level Translation
- What about a free of tfables?

- Lowest level page table=memory still allocated with bitmap
- Higher levels often segmented

+ Could have any number of levels. Example (top segment):

Virtual
Address: cq # | Page # |  Offset
page #0 [ V.R |
BaseO| Limit page #1 pare s | Offset
Basel [ Liffit1 |V n
page 73 Physical Address
Based | Cinird page #4
ase: imi
Base5| Limit5 page #5
Base| Limit6 Nb Access Acc}ess
B i
ase7 | Limit7 [V — Error Error

+ What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)
- Pointer to top-level table (page table)

3/10/08 Joseph C5162 ®UCB Spring 2008 Lec 12.20




What about Sharing (Complete Segment)?

"”°§ page FOT VR
page #1 | V,R
page #2 [V.R.W
B2 page #3 V.R.W
V] page #4 | N
8 N page #5 [V.R.WM
Base4|Limit4 |V Shared Segment
Base5| Limit5 [N
Base6 | Limit6 [N
Base7| Limit7 |V

Process
B

3/10/08

Joseph C5162 ©UCB Spring 2008

Lec 12.21

Multi-level Translation Analysis

* Pros:
- Only need to allocate as many page table entries as we
need for application
» In other words, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing

» Share at segment or page level (need additional reference
counting)

+ Cons:
- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous
» However, previous example keeps tables fo exactly one
page in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensivel

3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 12.23

Page 6

Another common example: two-level page table
Physical yaica
Address:| Pa

10 bits 10 bits

virtua virtual

12 bits

Virtual
Address:

PageTablePir

—> 4 bytes €—

* Tree of Page Tables
 Tables fixed size (1024 entries)
- On context-switch: save single
PageTablePtr register
+ Valid bits on Page Table Entries
- Don't need every 2"-level table
- Even when exist, 2nd-level tables

can reside on disk if not in use
3/10/08 Joseph CS5162 ©UCB Spring 2008

—> 4 bytes «—

Lec 12.22

Inverted Page Table
+ With ali previous examples (“Forward Page Tables")

- Size of page table is at least as large as amount of
virtual memory allocated to processes

- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table

- Called an “Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

- Often in hardware!

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 12.24




What is in a PTE?

* What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”
Page Frame Number
(Physical Page Number) (0Ss) (v
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).

Bottom 22 bifs of virtual address serve as offset
Joseph C5162 ©UCB Spring 2008 Lec 12.25

|

Free LDARg‘luwp

3/10/08

How is the translation accomplished?

Virtual
Addresses
—p

* What, exactly happens inside MMU?
* One possibility: Hardware Tree Traversal

- For each virtual address, takes ﬁage table base pointer
and traverses the page table in hardware

- Generates a "Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture
- Pros: Relatively fast (but still many memory accessesl!)
- Cons: Inflexible, Complex hardware
+ Another possibility: Software
- Each traversal done in software
- Pros: Very flexible
- Cons: Every translation must invoke Fault!

« In fact, need way to cache translations for either case!
3/10/08 oseph 5162 ©UCB Spring 2008 Lec 12.27

Physical
Addresses

MMU

Page 7

Examples of how to use a PTE

How do we use the PTE?
- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory
- Validity checked first
» OS can use other (say) 31 bits for location info
Usage Example: Demand Paging
- Keep only active Jaalges in memory
- Place others on disk and mark their PTEs invalid
Ussﬁ Example: Copy on Write
- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
- How to do this cheaply?
» Make copy of parent's page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
Usage ngample: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid: page fault on use gets zeroed page
- Often, OS creates zeroed pages in background

3/10/08 Joseph €5162 ©UCB Spring 2008

Lec 12.26

Summary (1/2)

* Memory is a resource that must be shared
- Controlled Overlap: only shared when appropriate
- Translation: Change Virtual Addresses into Physical
Addresses
- Protection: Prevent unauthorized Sharing of resources

+ Segment Mapping
- Segment registers within processor
- Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
- Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base

Lec 12.28

3/10/08 Joseph C5162 ©UCB Spring 2008




Summary (2/2)

+ Page Tables
- Memory divided into fixed-sized chunks of memory
- Virtual page number from virtual address mapped
through page table to physical page number
- Offset of virtual address same as physical address
- Large page tables can be placed into virtual memory

* Multi-Level Tables
- Virtual address mapped to series of tables
- Permit sparse population of address space

+ Inverted page table
- Size of page table related to physical memory size

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 12.29

Page 8



