
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 13

Caches and TLBs

March 12, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 13.23/10/08 Joseph CS162 ©UCB Spring 2008

• What about a tree of tables?
– Lowest level page tablememory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Review: Multi-level Translation

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Perm

Access
Error

Lec 13.33/10/08 Joseph CS162 ©UCB Spring 2008

Physical
Address: OffsetPhysical

Page #

4KB

Review: Two-level page table

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Sometimes, top-level page tables
called “directories” (Intel)

• Each entry called a (surprise!)
Page Table Entry (PTE)

4 bytes

Lec 13.43/10/08 Joseph CS162 ©UCB Spring 2008

Review: What is in a PTE?

• What is in a Page Table Entry (or PTE)?
– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS)

0 L D A

PC
D

PW
T U W P

01234567811-931-12

Page 2

Lec 13.53/10/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Caching

• Translation Look-aside Buffers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

Lec 13.63/10/08 Joseph CS162 ©UCB Spring 2008

Caching Concept

• Cache: a repository for copies that can be accessed
more quickly than the original

– Make frequent case fast and infrequent case less dominant
• Caching underlies many of the techniques that are used

today to make computers fast
– Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Lec 13.73/10/08 Joseph CS162 ©UCB Spring 2008

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10
yrs)

DRAM

1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
a
nc

e

Time

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

“Less’ Law?”

Lec 13.83/10/08 Joseph CS162 ©UCB Spring 2008

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make
memory access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

Page 3

Lec 13.93/10/08 Joseph CS162 ©UCB Spring 2008

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space
0 2n - 1

Probability
of reference

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor

Blk X

Blk Y

Lec 13.103/10/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Project #2 code deadline is next Thu (3/20)
– Having Eclipse startup problems?

» The fix is to delete your ~/.eclipse folder:
rm -rf ~/.eclipse
Then restart eclipse to recreate your config, you don’t
have to delete your workspace

• Please use the CS162 newsgroup for faster response
– EECS email is significantly delayed this week

• Midterm #2 re-grade requests due by Fri 3/14 5pm
– Talk with us if your grade is 1-2 std devs below mean

• Attend a CSUA Unix session to better understand
Unix

– CSUA holds them towards the beginning of each
semester

Lec 13.113/10/08 Joseph CS162 ©UCB Spring 2008

Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology

– Provide access at speed offered by the fastest technology

O
n

-C
h

ip

C
a
c
h

e

R
e
g

iste
rs

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

1s 10,000,000s
(10s ms)

Speed (ns): 10s-100s 100s

100s Gs-TsSize (bytes): Ks-Ms Ms-Gs

Tertiary

Storage

(Tape)

10,000,000,000s
(10s sec)

Ts-Ps

Lec 13.123/10/08 Joseph CS162 ©UCB Spring 2008

Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape /Optical
Robot

109

106

Sacramento

This Lecture Hall
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

Page 4

Lec 13.133/10/08 Joseph CS162 ©UCB Spring 2008

• Compulsory (cold start or process migration, first
reference): first access to a block

– “Cold” fact of life: not a whole lot you can do about it

– Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program

– Solution: increase cache size

• Conflict (collision):

– Multiple memory locations mapped
to the same cache location

– Solution 1: increase cache size

– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O)
updates memory

A Summary on Sources of Cache Misses

Lec 13.143/10/08 Joseph CS162 ©UCB Spring 2008

• Index Used to Lookup Candidates in Cache

– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

• Block is minimum quantum of caching
– Data select field used to select data within block

– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block
offset

Block Address

Tag Index

Set Select

Data Select

Lec 13.153/10/08 Joseph CS162 ©UCB Spring 2008

:

0x50

Valid Bit

:

Cache Tag

Byte 32

0

1

2

3

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The lowest L bits are the Byte Select (Block Size = 2L)
– The middle M bits are the Cache Index (Cache Lines = 2M)
– The uppermost bits are the Cache Tag (32 – (M + L))

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block, Tag checked to verify
block, Byte select chooses byte within block

Ex: 0x50 Ex: 0x00

0431

Cache Tag Byte Select

9

Cache Index

Ex: 0x01

Lec 13.163/10/08 Joseph CS162 ©UCB Spring 2008

Cache Index

0431

Cache Tag Byte Select

8

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache

• N-way set associative: N entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

Page 5

Lec 13.173/10/08 Joseph CS162 ©UCB Spring 2008

Review: Fully Associative Cache

• Fully Associative: Every block can hold any line
– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04

Cache Tag (27 bits long) Byte Select

31

=

=

=

=

=

Ex: 0x01

Lec 13.183/10/08 Joseph CS162 ©UCB Spring 2008

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block

no.

Direct mapped:
block 12 can go

only into block 4

(12 mod 8)

Set associative:
block 12 can go

anywhere in set 0

(12 mod 4)

0 1 2 3 4 5 6 7Block

no.

Set

0

Set

1

Set

2

Set

3

Fully associative:
block 12 can go

anywhere

0 1 2 3 4 5 6 7Block

no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Review: Where does a Block Get Placed in a Cache?

Lec 13.193/10/08 Joseph CS162 ©UCB Spring 2008

• Easy for Direct Mapped: Only one possibility

• Set Associative or Fully Associative:

– Random

– LRU (Least Recently Used)

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?

Lec 13.203/10/08 Joseph CS162 ©UCB Spring 2008

• Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

• Write back: The information is written only to the
block in the cache.

– Modified cache block is written to main memory only
when it is replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require writeback of dirty data

Review: What happens on a write?

Page 6

BREAK

Lec 13.223/10/08 Joseph CS162 ©UCB Spring 2008

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Lec 13.233/10/08 Joseph CS162 ©UCB Spring 2008

What Actually Happens on a TLB Miss?

• Hardware traversed page tables:
– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards

• Software traversed Page tables (like MIPS)
– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

– Examples:
» shared segments
» user-level portions of an operating system

Lec 13.243/10/08 Joseph CS162 ©UCB Spring 2008

What happens on a Context Switch?

• Need to do something, since TLBs map virtual
addresses to physical addresses

– Address Space just changed, so TLB entries no
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?

– Include ProcessID in TLB
» This is an architectural solution: needs hardware

• What if translation tables change?

– For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

Page 7

Lec 13.253/10/08 Joseph CS162 ©UCB Spring 2008

What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

Lec 13.263/10/08 Joseph CS162 ©UCB Spring 2008

TLB organization: include protection

• How big does TLB actually have to be?
– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34

0x0040 0x0010 N Y Y R 0

0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 13.273/10/08 Joseph CS162 ©UCB Spring 2008

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg

TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset

12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among

64 user processes without TLB flush

Virtual Address Space

TLB

64 entry, on-chip, fully associative, software TLB fault handler

Lec 13.283/10/08 Joseph CS162 ©UCB Spring 2008

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V
Access
Rights PA

V page no. offset

10

P page no. offset

10

Physical Address

Page 8

Lec 13.293/10/08 Joseph CS162 ©UCB Spring 2008

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2

00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

Lec 13.303/10/08 Joseph CS162 ©UCB Spring 2008

Summary #1/2

• The Principle of Locality:
– Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start
misses.

– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O
devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

Lec 13.313/10/08 Joseph CS162 ©UCB Spring 2008

Summary #2/2: Translation Caching (TLB)

• PTE: Page Table Entries
– Includes physical page number
– Control info (valid bit, writeable, dirty, user, etc)

• A cache of translations called a “Translation Lookaside
Buffer” (TLB)

– Relatively small number of entries (< 512)

– Fully Associative (Since conflict misses expensive)

– TLB entries contain PTE and optional process ID

• On TLB miss, page table must be traversed

– If located PTE is invalid, cause Page Fault

• On context switch/change in page table
– TLB entries must be invalidated somehow

• TLB is logically in front of cache
– Thus, needs to be overlapped with cache access to be
really fast

