CS162
Operating Systems and
Systems Programming
Lecture 13

Caches and TLBs

March 12, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

age table

hysical

12 bits Address:

Review: Two-level B

10 bits 10 bits

Virtual
Address:

PageTablePtr

—> 4 bytes «—
*+ Tree of Page Tables
+ Tables fixed size (1024 entries)
- On context-switch: save single ==
PageTablePtr register
+ Sometimes, top-level page tables
called “directories” (Intel)
+ Each entry called a (surprise!)
Page Table Entry (PTE)

3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 13.3

— 4 bytes +—

Page 1

Review: Multi-level Translation
- What about a free of tables?
- Lowest level page table=memory still allocated with bitmap
- Higher levels often segmented
+ Could have any number of levels. Example (top segment):

Virtual
Address: Offset
page #0 [V.R |
aseO [Limit! page #1 Offeet
Basel|Lifit1 |V 7
page #3 Physical Address
ase3 | Limit page #4
Base4|Limit4
Base5 | Limits page #5
Base6 [Limit6 [N Access N C‘ess
Base7|Limit7 [V z:> e
e — Error Error

+ What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)

- Pointer to top-level table (page table)
3/10/08 Joseph CS5162 ©UCB Spring 2008 Lec 13.2

Review: What is in a PTE?

* What is in a Page Table Entry (or PTE)?

- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only

+ Example: Intel x86 architecture PTE:

- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free 3
(Physical Page Number) | 05y |°][°[4|SFV[M®
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable

U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
1 Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.4

Goals for Today

+ Caching

+ Translation Look-aside Buffers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

3/10/08 Joseph 5162 ®UCB Spring 2008 Lec 13.5
Why Bother with Caching?
Processor-DRAM Memory Gap (latency)
= Proc
1000 “Moore's Law" ' 60%/yr.
9 (really Joy's Law) (2X/1.5yr)
S$100 o 7 | PRigcessor - Memory
g Performance Gap:
K] 10 . |(grows 50% / year)
5 “Less’ Law?" ~—DRAM
a. DRAM 9%/yr‘_
1= (2X/10
o= am<io oNonO-nmt'in'oNo'ano
D 00 V00 60 G0 O W W O O\ O\ O O\ O\ Or O\ O\ Or O O yr's)
QAR AXT[TRRTZ2RZ22SR
Time
3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 13.7

Page 2

Caching Concept
/o757

—=[7] ’ '&‘0) —
B ALY
T

* Cache: a repository for copies that can be accessed
more quickly than the original
- Make frequent case fast and infrequent case less dominant
+ Caching underlies many of the techniques that are used
today To make computers fast

- Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc...

- Only good if:
- Frequent case frequent enough and
- Infrequent case not too expensive
* Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
Joseph €5162 ©UCB Spring 2008

3/10/08 Lec 13.6

Another Major Reason to Deal with Caching

Virtual
Address: ey
page #0 | V.R
BaseO[Limit page :1 VR _» Offset
Basel | Lifit1 [V page #2"V.R, -
Base® Limi page #3 VR W Physical Address
Base3| Limit! page #4 | N
Base4 | Limit4
Base5| Limith page #5 |V.R.W ecrlien
Base6 | Limité [N Access Access
Base7| Limit7 [V e
ase7| Limi tD_'Error Error

+ Cannot afford to translate on every access
- At least three DRAM accesses per actual DRAM access
- Or: perhaps I/0 if page table partially on disk!

- Even worse: What if we are using caching to make
memory access faster than DRAM access???

- Solution? Cache translations!

- Translation Cache: TLB ("Translation Lookaside Buffer"g
3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.

Why Does Caching Help? Locality!

[T
- /,-Zg

0 Address Space -1

Probability
of reference

* Temporal Locality (Locality in Time):

- Keep recently accessed data items closer to processor
+ Spatial Locality (Locality in Space):

- Move contiguous blocks to the upper levels

Lower Level
To Processor | Upper Level Memory
Memory
Blk X
From Processor BIKY

3/10/08 Joseph €5162 ®UCB Spring 2008 Lec 13.9

Memory Hierarchy of a Modern Computer System

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Control i
Secondary 'g:;:’l:grg
S . Storage
5 Main (Disk) (Tape)
P o8 Level Memory
Datapath|&, || [8 & Cache | | (DRAM)
Z 3= (SRAM)
3 e}

Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms-6s 6s-Ts Ts-Ps
Lec 13.11

3/10/08 Joseph CS162 ©UCB Spring 2008

Page 3

Administrivia

* Project #2 code deadline is next Thu (3/20)
- Having Eclipse startup problems?
» The fix is to delete your ~/.eclipse folder:
rm -rf ~/.eclipse
Then restart eclipse to recreate your config, you don't
have to delete your workspace

+ Please use the €C5162 newsgroup for faster response
- EECS email is significantly delayed this week

* Midterm #2 re-grade requests due by Fri 3/14 5pm
- Talk with us if your grade is 1-2 std devs below mean

+ Attend a CSUA Unix session to better understand

Unix
- CSUA holds them towards the beginning of each
semester
3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.10
Jim Gray's Storage Latency Analogy:
How Far Away is the Data?
9 Andromeda
10° Tape /Optical > 2,000 Years
Robot ww‘“"p
106 Disk 2 Years
100 Memory 1.5 hr
10 On Board Cache 10 min
2 On Chip Cache i m
1 Registers %My Head 1 min
Lec 13.12

3/10/08 Joseph CS162 ®UCB Spring 2008

A Summary on Sources of Cache Misses

+ Compulsory (cold start or process migration, first
reference): first access to a block

- "Cold” fact of life: not a whole lot you can do about it

- Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

* Capacity:
- Cache cannot contain all blocks access by the program
- Solution: increase cache size
- Conflict (collision):
- Multiple memory locations mapped
to the same cache location
- Solution 1: increase cache size
- Solution 2: increase associativity

- Coherence (Invalidation): other process (e.g., I/0)

u(gda‘res memory

3/10/ Joseph C5162 ©UCB Spring 2008 Lec 13.13

Review: Direct Mapped Cache

- Direct Mapped 2N byte cache:
- The lowest L bits are the Byte Select (Block Size = 2\)
- The middle M bits are the Cache Index (Cache Lines = 2M)
- The uppermost bits are the Cache Tag (32 - (M + L))
. Examdple: 1 KB Direct Mag ed Cache with 32 B Blocks
- Index chooses potential block, Tag checked to verify
block, Byte select chooses byte within block

31

9

4

0

Cache Tag [Cache index | ByteSelect |
Ex: 0x50 Ex: 0x01 Ex: 0x00
Valid Bit Cache Tag Cache Data

1Byte3l).. . Byte L. Bytd0.1 0
Byte63| *° |Byte33|Byte32| i
................................... 5
3

Byte 1023 Byte 992 | 31

3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 13.15

Page 4

How is a Block found in a Cache?

[Block Address |
[Tag [Index |

| —

Set Select

Block
offset

Data Select
* Index Used to Lookup Candidates in Cache
- Index identifies the set
* Tag used to identify actual copy
- If no candidates match, then declare cache miss
* Block is minimum quantum of caching
- Data select field used to select data within block
- Many caching applications don't have data select field

3/10/08 Joseph €5162 ©UCB Spring 2008 Lec 13.14

Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

+ Example: Two-way set associative cache
- Cache Index selects a “"set” from the cache
- Two tags in the set are compared to input in parallel

- Data is selected based on the tag result
31 8

| Cache Tag

4 0
IByteSeIect |

l Cache Index

Valid

Cache Tag

Cache Data

Cache Data

Cache Tag Valid

Cache Block 0

Cache Block 0

3/10/08

=

_| Cache Block

Lec 13.16

Review: Fully Associative Cache

- Fully Associative: Every block can hold any line
- Address does not include a cache index
- Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks
- We need N 27-bit comparators
- Still have byte select to choose from within block
31 4 0

| Cache Tag (27 bits long) | Byteselect |
Ex: 0x01
Cache Tag ValidBit Cache Data
——C)— Byte3l| - - |Bytel | ByteO
—C)— Byte63| - - |Byte33|Byte32
—.@._
L O—]
o

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.17

Review: Which block should be replaced on a miss?

+ Easy for Direct Mapped: Only one possibility
- Set Associative or Fully Associative:

- Random

- LRU (Least Recently Used)

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64KB 19% 20% 15% 1.7% 1.4% 15%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 13.19

Page 5

Review: Where does a Block Get Placed in a Cache?

+ Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped:

block 12 can go

Set associative:
block 12 can go

Fully associative:
block 12 can go

only into block 4 anywherein set 0 anywhere
(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
012 3
3/10/08 Joseph CS5162 ©UCB Spring 2008 Lec 13.18

Review: What happens on a write?

* Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

+ Write back: The information is written only to the
block in the cache.

- Modified cache block is written to main memory only
when it is replaced
- Question is block clean or dirty?
+ Pros and Cons of each?
-WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered
- WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data
3/10/08

Joseph CS162 ®UCB Spring 2008 Lec 13.20

BREAK

What Actually Happens on a TLB Miss?

* Hardware traversed page tables:
- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards
+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal
- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system

3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 13.23

Page 6

Caching Applied to Address Translation
N\

Virtual TLB Physical
Address Cached? Address .
Yes > —p | Physical
No 4 Memory
| 4
Ly

Translate
(MMU)

Data Read or Write
(untranslated)

* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same

page (since accesses sequential)

- Stack accesses have definite locality of reference

- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?

- Sure: multiple levels at differentocs’gzes/speeds

3/10/08 Joseph C5162 ©UCB Spring 2! Lec 13.22

What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses
- Address Space just changed, so TLB entries no
longer valid!
* Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?
- For example, to move page from memory to disk or
vice versa...
- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
Lec 13.24

3/10/08 Joseph C5162 ©UCB Spring 2008

What TLB organization makes sense?

TLB |—| Cache [—| Memory

+ Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
- Seems to argue for Direct Mapped or Low Associativity
+ However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!
- This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)
* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
- What if use high order bits as index?
» TLB mostly unused for small programs

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.25
. . . 1) (]
Example: R3000 pipeline includes TLB "stages”
MIPSR3000 Pipeline
l Inst Fetch l Dcd/ Reg l ALU | EA [Memory [Write Reg l
| TLB | I-cache | RF | Operation || B |
| EA.| TLB | D-Cache |
TLB
64 entry, on-chip, fully associative, software TLB fault handler
Virtual Address Space
IASID H:D:I V. Page Number l Offset l
6 T 20 12
0xx User segment (caching based on PT/TLB entry)
100Kernel physical space, cached
101 Kernel physical space,uncached
11x Kernel virtual space
Allows context switching among
64 user processes without TLB flush
3/10/08 Joseph CS162 ©UCB Spring 2008 Lec 13.27

Page 7

TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info
* What happens when fully-associative is too slow?
- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”
* Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref |Valid |Access JASID
0xFA00 0x0003 Y N Y RW | 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0
3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.26

Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:
Virtual Address

~—10—

[Vpageno. | offset]
I

TLB Lookup

] T
i i
I\, FAcces
V ! Rights} PA
i !

|Ppaqeno. | 0ffset|

—10—

Physical Address

* Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

- Works because offset available early

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.28

Overlapping TLB & Cache Access

+ Here'is how IS mig workK wi a cache:
assoc
lookup ind
32| T8 ‘—' ’% 4K Cache |1K
20 10 2 ——4bytes—
[page # [disp [od
Hit/
Miss
FN FN Data Hit/
Miss

* What if cache size is increased to 8KB?

- Overlap not complete

- Need to do something else. See €5152/252
+ Another option: Virtual Caches

- Tags in cache are virtual addresses

- Translation only hap?ens on cache misses

3/10/08 Joseph C5162 ©UCB Spring 2008 Lec 13.29

Summary #2/2: Translation Caching (TLB)

* PTE: Page Table Entries
- Includes physical page number
- Control info (valid bit, writeable, dirty, user, etc)

- A cache of translations called a "Translation Lookaside
Buffer” (TLB)

- Relatively small number of entries (< 512)

- Fully Associative (Since conflict misses expensive)
- TLB entries contain PTE and optional process ID
+ On TLB miss, page table must be traversed

- If located PTE is invalid, cause Page Fault

* On context switch/change in page table

- TLB entries must be invalidated somehow

* TLB is logically in front of cache

- Thus, needs to be overlapped with cache access to be
eally fast

3/10/ Joseph CS162 ©UCB Spring 2008 Lec 13.31

Page 8

Summary #1/2

* The Principle of Locality:

- Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

* Three (+1) Major Categories of Cache Misses:

- Compulsory Misses: sad facts of life. Example: cold start
misses.

- Conflict Misses: increase cache size and/or associativity
- Capacity Misses: increase cache size

- Coherence Misses: Caused by external processors or I/0
devices

+ Cache Organizations:

- Direct Mapped: single block per set
- Set associative: more than one block per set
- Fully associative: all entries equivalent

3/10/08 Joseph €5162 ©UCB Spring 2008 Lec 13.30

