
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 14

Caching and
Demand Paging

March 17, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 14.23/17/08 Joseph CS162 ©UCB Spring 2008

Review: Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology

– Provide access at speed offered by the fastest technology

O
n

-C
h

ip

C
a
c
h

e

R
e
g
iste

rs

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

1s 10,000,000s
(10s ms)

Speed (ns): 10s-100s 100s

100s Gs-TsSize (bytes): Ks-Ms Ms-Gs

Tertiary

Storage

(Tape)

10,000,000,000s
(10s sec)

Ts-Ps

Lec 14.33/17/08 Joseph CS162 ©UCB Spring 2008

Review: What is in a PTE?

• What is in a Page Table Entry (or PTE)?
– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS)

0 L D A

PC
D

PW
T U W P

01234567811-931-12

Lec 14.43/17/08 Joseph CS162 ©UCB Spring 2008

• What line gets replaced on cache miss?

– Easy for Direct Mapped: Only one possibility

– Set Associative or Fully Associative:
» Random

» LRU (Least Recently Used)

• What happens on a write?
– Write through: The information is written to both the
cache and to the block in the lower-level memory

– Write back: The information is written only to the
block in the cache

» Modified cache block is written to main memory only
when it is replaced

» Question is block clean or dirty?

Review: Other Caching Questions

Page 2

Lec 14.53/17/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Concept of Paging to Disk

• Page Faults and TLB Faults

• Precise Interrupts

• Page Replacement Policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 14.63/17/08 Joseph CS162 ©UCB Spring 2008

Demand Paging

• Modern programs require a lot of physical memory
– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk

O
n

-C
h

ip

C
a
c
h

e

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

Tertiary

Storage

(Tape)

Caching

Lec 14.73/17/08 Joseph CS162 ©UCB Spring 2008

Page
Table

T
L
B

Illusion of Infinite Memory

• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than
physical memory

» More programs fit into memory, allowing more concurrency
• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB



Virtual
Memory
4 GB

Lec 14.83/17/08 Joseph CS162 ©UCB Spring 2008

Demand Paging is Caching

• Since Demand Paging is Caching, must ask:

– What is block size?
» 1 page

– What is organization of this cache (i.e. direct-mapped,
set-associative, fully-associative)?

» Fully associative: arbitrary virtualphysical mapping

– How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

– What is page replacement policy? (i.e. LRU, Random…)
» This requires more explanation… (kinda LRU)

– What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

Page 3

Lec 14.93/17/08 Joseph CS162 ©UCB Spring 2008

Administrative

• Project 2 code due Thursday 3/20 at 11:59pm
– Project 2 autograder is up and running every 15
minutes

• Make sure you attend sections!
– There will be a lot of information about the projects
that I cannot cover in class

– Also supplemental information and detail that we don’t
have time for in class

• We have an anonymous feedback link on the course
homepage
– Please use to give feedback on course
– Wednesday: We will have a survey to fill out

Lec 14.103/17/08 Joseph CS162 ©UCB Spring 2008

• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue

» Suspended process sits on wait queue

Demand Paging Mechanisms

Lec 14.113/17/08 Joseph CS162 ©UCB Spring 2008

Software-Loaded TLB

• MIPS/Nachos TLB is loaded by software
– High TLB hit rateok to trap to software to fill the
TLB, even if slower

– Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

• How can a process run without access to page table?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling

Lec 14.123/17/08 Joseph CS162 ©UCB Spring 2008

Transparent Exceptions

• How to transparently restart faulting instructions?
– Could we just skip it?

» No: need to perform load or store after reconnecting
physical page

• Hardware must help out by saving:
– Faulting instruction and partial state

» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Load TLB

F
a
ul
ti
ng

In
st

 1

F
a
ul
ti
ng

In
st

 1

F
a
ul
ti
ng

In
st

 2

F
a
ul
ti
ng

In
st

 2

Fetch page/
Load TLB

User

OS

TLB Faults

Page 4

Lec 14.133/17/08 Joseph CS162 ©UCB Spring 2008

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once

read-only
• What about “RISC” processors?

– For instance delayed branches?
» Example: bne somewhere

ld r1,(sp)

» Precise exception state consists of two PCs: PC and nPC
– Delayed exceptions:

» Example: div r1, r2, r3
ld r1, (sp)

» What if takes many cycles to discover divide by zero,
but load has already caused page fault?

Lec 14.143/17/08 Joseph CS162 ©UCB Spring 2008

Precise Exceptions

• Precise  state of the machine is preserved as if
program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
• Imprecise  system software has to figure out what is

where and put it all back together
• Performance goals often lead designers to forsake

precise interrupts
– system software developers, user, markets etc. usually
wish they had not done this

• Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Lec 14.153/17/08 Joseph CS162 ©UCB Spring 2008

Steps in Handling a Page Fault

Lec 14.163/17/08 Joseph CS162 ©UCB Spring 2008

Demand Paging Example

• Since Demand Paging like caching, can compute
average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = (1 – p) x 200ns + p x 8 ms
= (1 – p) x 200ns + p x 8,000,000ns
= 200ns + p x 7,999,800ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT  p < 2.5 x 10-6

– This is about 1 page fault in 400000!

Page 5

Lec 14.173/17/08 Joseph CS162 ©UCB Spring 2008

Review: What Factors Lead to Misses?

• Compulsory Misses:
– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later…

• Capacity Misses:
– Not enough memory – must somehow increase size

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust

percentage of memory allocated to each one!

• Conflict Misses (collision):
– Doesn’t exist in virtual memory (“fully-associative” cache)

• Policy Misses:
– Replacement policy kicks pages out of memory early
– How to fix? Better replacement policy

• Coherence Misses (invalidation):
– Not a problem for virtual memory, since all
processes/cores share same memory

BREAK

Lec 14.193/17/08 Joseph CS162 ©UCB Spring 2008

Page Replacement Policies

• Why do we care about Replacement Policy?
– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

Lec 14.203/17/08 Joseph CS162 ©UCB Spring 2008

Replacement Policies (Con’t)

• LRU (Least Recently Used):
– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Page 6

Lec 14.213/17/08 Joseph CS162 ©UCB Spring 2008

• Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:
– A B C A B D A D B C B

• Consider FIFO Page replacement:

– FIFO: 7 faults.
– When referencing D, replacing A is bad choice, since
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:

Page:

Lec 14.223/17/08 Joseph CS162 ©UCB Spring 2008

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults
– Where will D be brought in? Look for page not
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:

Page:

Lec 14.233/17/08 Joseph CS162 ©UCB Spring 2008

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:

Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:

Page:

Lec 14.243/17/08 Joseph CS162 ©UCB Spring 2008

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the
miss rate goes down
– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this
obvious property!

Page 7

Lec 14.253/17/08 Joseph CS162 ©UCB Spring 2008

Adding Memory Doesn’t Always Help Fault Rate

• Does adding memory reduce number of page faults?
– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with
X pages are a subset of contents with X+1 Page

D

C

E

B

A

D

C

B

A

DCBAEBADCBA E

3

2

1

Ref:
Page:

CD4

E

D

B

A

E

C

B

A

DCBAEBADCBA E

3

2

1

Ref:
Page:

Lec 14.263/17/08 Joseph CS162 ©UCB Spring 2008

Implementing LRU

• Perfect:
– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand
– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO

Set of all pages

in Memory

Lec 14.273/17/08 Joseph CS162 ©UCB Spring 2008

Summary

• Demand Paging:
– Treat memory as cache on disk
– Cache miss  get page from disk

• Transparent Level of Indirection
– User program is unaware of activities of OS behind scenes
– Data can be moved without affecting application correctness

• Software-loaded TLB
– Fast Path: handled in hardware (TLB hit with valid=1)
– Slow Path: Trap to software to scan page table

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: replace page that will be used farthest in future
– LRU: Replace page that hasn’t be used for the longest time
– Clock Algorithm: Approximation to LRU

