
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 15

Page Allocation and
Replacement

March 19, 2008

Prof. Anthony D. Josep

http://inst.eecs.berkeley.edu/~cs162

Lec 15.23/19/08 Joseph CS162 ©UCB Spring 2008

• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue

» Suspended process sits on wait queue

Review: Demand Paging Mechanisms

Lec 15.33/19/08 Joseph CS162 ©UCB Spring 2008

Review: Software-Loaded TLB

• MIPS/Nachos TLB is loaded by software
– High TLB hit rateok to trap to software to fill the
TLB, even if slower

– Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

• How can a process run without hardware TLB fill?
– Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
– Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a TLB Fault
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “Page Fault” detailed previously
» Continue thread

• Everything is transparent to the user process:
– It doesn’t know about paging to/from disk
– It doesn’t even know about software TLB handling

Lec 15.43/19/08 Joseph CS162 ©UCB Spring 2008

Review: Implementing LRU

• Perfect:
– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand
– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO

Set of all pages

in Memory

Page 2

Lec 15.53/19/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Page Replacement Policies

– Clock Algorithm, Nth chance algorithm, 2nd-Chance-
List Algorithm

• Page Allocation Policies

• Working Set/Thrashing

• Distributed Problems
– Brief History

– Parallel vs. Distributed Computing

– Parallelization and Synchronization

– Prelude to MapReduce

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne; and from slides licensed under the
Creative Commons Attribution 2.5 License by the University of Washington
(2007). Many slides generated from my lecture notes by Kubiatowicz.

Lec 15.63/19/08 Joseph CS162 ©UCB Spring 2008

Clock Algorithm: Not Recently Used

Set of all pages

in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly

• What if hand is moving quickly?
– Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm:
– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Lec 15.73/19/08 Joseph CS162 ©UCB Spring 2008

Nth Chance version of Clock Algorithm

• Nth chance algorithm: Give page N chances
– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page

• What about dirty pages?
– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 15.83/19/08 Joseph CS162 ©UCB Spring 2008

Clock Algorithms: Details

• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock
algorithm

– Modified: set when page is modified, cleared when page
written to disk

– Valid: ok for program to reference this page

– Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!

• Do we really need hardware-supported “modified” bit?

– No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit,
and marks page as read-write.

» Whenever page comes back in from disk, mark read-only

Page 3

Lec 15.93/19/08 Joseph CS162 ©UCB Spring 2008

Clock Algorithms Details (continued)

• Do we really need a hardware-supported “use” bit?
– No. Can emulate it similar to above:

» Mark all pages as invalid, even if in memory

» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU
– Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

Lec 15.103/19/08 Joseph CS162 ©UCB Spring 2008

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC

Victims

Lec 15.113/19/08 Joseph CS162 ©UCB Spring 2008

Second-Chance List Algorithm (con’t)

• How many pages for second chance list?
– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes
– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
Lec 15.123/19/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• All slides except last lecture are (finally) online!
– Reader should be available Friday

• Project 2 code due Thursday 3/20 at 11:59pm

Page 4

Lec 15.133/19/08 Joseph CS162 ©UCB Spring 2008

Aside: Powers of 10 and 2

• Strict powers of 10:

– yotta: 1024

– exa: 1018

– peta: 1015

– tera: 1012

– giga: 109

– mega: 106

– kilo: 103

– milli(m): 10-3

– micro (): 10-6

– nano(n): 10-9

– pico: 10-12

– femto: 10-15

– atto: 10-18

– yocto: 10-24

• Strict powers of 2:

– yotta: 280  1024

– exa: 260  1018

– peta: 250  1015

– tera: 240  1012

– giga: 230  1,073,741,824  109

– mega: 220  1,048,576  106

– kilo: 210  1024  103

• When to use one or the other?

– Powers of 2

» Memory sizes

– Powers of 10

» Time

» Bandwidth

Lec 15.143/19/08 Joseph CS162 ©UCB Spring 2008

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages

in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 15.153/19/08 Joseph CS162 ©UCB Spring 2008

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:

– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page  physical page

– Do we need a reverse mapping (i.e. physical page 
virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page

» Can’t push page out to disk without invalidating all PTEs

Lec 15.163/19/08 Joseph CS162 ©UCB Spring 2008

Allocation of Page Frames (Memory Pages)

• How do we allocate memory among different processes?
– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:

– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

Page 5

Lec 15.173/19/08 Joseph CS162 ©UCB Spring 2008

Fixed/Priority Allocation

• Equal allocation (Fixed Scheme):
– Every process gets same amount of memory
– Example: 100 frames, 5 processesprocess gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = si
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S

si 

Lec 15.183/19/08 Joseph CS162 ©UCB Spring 2008

Page-Fault Frequency Allocation

• Can we reduce Capacity misses by dynamically
changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

Lec 15.193/19/08 Joseph CS162 ©UCB Spring 2008

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing  a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 15.203/19/08 Joseph CS162 ©UCB Spring 2008

• Program Memory Access
Patterns have temporal
and spatial locality
– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working SetThrashing
– Better to swap out
process?

Locality In A Memory-Reference Pattern

Page 6

Lec 15.213/19/08 Joseph CS162 ©UCB Spring 2008

Working-Set Model

•   working-set window  fixed number of page
references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages
referenced in the most recent  (varies in time)
– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames
• if D > m  Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

Lec 15.223/19/08 Joseph CS162 ©UCB Spring 2008

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen

– Pages that are touched for the first time

– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application

– When swapping process back in, swap in working set

Lec 15.233/19/08 Joseph CS162 ©UCB Spring 2008

Paging Summary

• Replacement policies
– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

BREAK

Page 7

Lec 15.253/19/08 Joseph CS162 ©UCB Spring 2008

Computer Speedup

• What can you do with 1 computer?

• What can you do with 100 computers?

• What can you do with an entire data center?

Moore’s Law: “The
density of transistors

on a chip doubles
every 18 months, for
the same cost” (1965)

Image: Tom’s Hardware
Lec 15.263/19/08 Joseph CS162 ©UCB Spring 2008

Some Distributed Problems

• Rendering multiple frames of high-quality
animation

• Simulating several hundred or thousand
characters

Happy Feet © Kingdom Feature Productions; Lord of the Rings © New Line Cinema; Shrek © DreamWorks Animation

Lec 15.273/19/08 Joseph CS162 ©UCB Spring 2008

More Distributed problems

• Indexing the web (Google)

• Simulating an Internet-sized network for
networking experiments (PlanetLab, DETER)

• Speeding up content delivery (Akamai)

• What is the key attribute that all these examples
have in common?

• Distributed computing:
– Multiple CPUs/cores across many computers (MIMD)

• Parallel computing:
– Vector processing of data (SIMD)

– Multiple CPUs/cores in a single computer (MIMD)

Lec 15.283/19/08 Joseph CS162 ©UCB Spring 2008

A Brief History… 1975-85

• 1975-85:

– Primarily vector-based parallel computing in early years

– Gradually more thread-based parallelism introduced

• 1985-95:

– “Massively parallel architectures” rise in prominence

– Message Passing Interface (MPI) and other libs developed

– Bandwidth was a big problem

• 1995-today:
– Berkeley Network of Workstations (NOW) project

» COTS tech instead of special node
machines

– Cluster/grid architecture increasingly dominant

– Web-wide cluster software
» Microsoft, Google, Amazon take this

to the extreme (thousands of nodes/cluster)

Cray 2 supercomputer
(Wikipedia)

Page 8

Lec 15.293/19/08 Joseph CS162 ©UCB Spring 2008

Parallelization Idea

• Parallelization is “easy” if processing can be
cleanly split into n units:

• In a parallel computation, we would like to have as
many threads as we have processors
– Ex. 4-CPU computer would be able to run four
threads at the same time

work

w1 w2 w3

Partition

problem

Lec 15.303/19/08 Joseph CS162 ©UCB Spring 2008

Parallelization Idea (2)

w1 w2 w3

thread thread thread

Spawn worker threads:

thread thread thread

Workers process data:

w1 w2 w3

results

Report

results

thread thread thread

w1 w2 w3

Lec 15.313/19/08 Joseph CS162 ©UCB Spring 2008

Parallelization Pitfalls

• This model is too simple!

– How do we assign work units to worker threads?

– What if we have more work units than threads?

– How do we aggregate the results at the end?

– How do we know all the workers have finished?

– What if the work cannot be divided into completely
separate tasks?

• Multiple threads must communicate with one
another, or access a shared resource

– We need a synchronization system!

Lec 15.323/19/08 Joseph CS162 ©UCB Spring 2008

Prelude to MapReduce

• Explicit parallelism/synchronization is really hard!!

– Must consider all possible shared state, keep locks
organized, and use them consistently and correctly

• Knowing there are bugs may be tricky; fixing
them can be even worse!

• Solution: Minimize shared state to reduce total
system complexity

• But, synchronization doesn’t address distributed
computing questions (e.g., moving data around)

• Fortunately, MapReduce handles this for us

– Google-designed paradigm for making large subset
of distributed problems easier to code

– Automates data distribution & result aggregation

– Restricts the ways data can interact to eliminate
locks (no shared state = no locks!)

