
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 16

I/O Systems

March 31, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 16.23/31/08 Joseph CS162 ©UCB Spring 2008

Review: Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology

– Provide access at speed offered by the fastest technology

O
n

-C
h

ip

C
a
c
h

e

R
e
g
iste

rs

Control

Datapath

Secondary

Storage

(Disk)

Processor

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

1s 10,000,000s
(10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary

Storage

(Tape)

10,000,000,000s
(10s sec)

Ts

Lec 16.33/31/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• I/O Systems

– Hardware Access

– Device Drivers

• Queuing Theory

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 16.43/31/08 Joseph CS162 ©UCB Spring 2008

The Requirements of I/O

• So far in this course:
– We have learned how to manage CPU, memory

• What about I/O?
– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do
or how they will perform?

• Some operational parameters:
– Byte/Block

» Some devices provide single byte at a time (e.g. keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)

– Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

– Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

Page 2

Lec 16.53/31/08 Joseph CS162 ©UCB Spring 2008

Modern I/O Systems

Lec 16.63/31/08 Joseph CS162 ©UCB Spring 2008

Example Device-Transfer Rates (Sun Enterprise 6000)

• Device Rates vary over many orders of magnitude
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

Lec 16.73/31/08 Joseph CS162 ©UCB Spring 2008

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices

– This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”);

for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);

}

close(fd);

– Why? Because code that controls devices (―device
driver‖) implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture

– Can only scratch surface!

Lec 16.83/31/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Would you like an extra 5% for your course grade?
– Attend lectures and sections! 5% of grade is
participation

– Midterm 1 was only 15%

• Project #3 design doc due next Monday (4/7) at
11:59pm

• Midterm #2 is in two weeks (Wed 4/16) 6-7:30pm in
10 Evans

Page 3

Lec 16.93/31/08 Joseph CS162 ©UCB Spring 2008

Want Standard Interfaces to Devices

• Block Devices: e.g. disk drives, tape drives, DVD-ROM
– Access blocks of data
– Commands include open(), read(), write(), seek()

– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()

– Libraries layered on top allow line editing
• Network Devices: e.g. Ethernet, Wireless, Bluetooth

– Different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes
Lec 16.103/31/08 Joseph CS162 ©UCB Spring 2008

How Does User Deal with Timing?

• Blocking Interface: ―Wait‖
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: ―Don’t Wait‖
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing

• Asynchronous Interface: ―Tell Me Later‖

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 16.113/31/08 Joseph CS162 ©UCB Spring 2008

Main components of Intel Chipset: Pentium 4

• Northbridge:

– Handles memory

– Graphics

• Southbridge: I/O

– PCI bus

– Disk controllers

– USB controllers

– Audio

– Serial I/O

– Interrupt controller

– Timers

Lec 16.123/31/08 Joseph CS162 ©UCB Spring 2008

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does the processor actually talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Page 4

Lec 16.133/31/08 Joseph CS162 ©UCB Spring 2008

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers
and display memory into physical
address space

» Addresses set by hardware jumpers
or programming at boot time

– Simply writing to display memory
(also called the ―frame buffer‖)
changes image on screen

» Addr: 0x8000F000—0x8000FFFF
– Writing graphics description to
command-queue area

» Say enter a set of triangles that
describe some scene

» Addr: 0x80010000—0x8001FFFF
– Writing to the command register
may cause on-board graphics
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000

Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 16.143/31/08 Joseph CS162 ©UCB Spring 2008

Transfering Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

Lec 16.153/31/08 Joseph CS162 ©UCB Spring 2008

A Kernel I/O Structure

Lec 16.163/31/08 Joseph CS162 ©UCB Spring 2008

Device Drivers

• Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like
open(), close(), read(), write(), ioctl(),
strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Page 5

Lec 16.173/31/08 Joseph CS162 ©UCB Spring 2008

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 16.183/31/08 Joseph CS162 ©UCB Spring 2008

I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Handled in bottom half of device driver

» Often run on special kernel-level stack
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance: High-bandwidth network device:

» Interrupt for first incoming packet
» Poll for following packets until hardware empty

BREAK

Lec 16.203/31/08 Joseph CS162 ©UCB Spring 2008

I/O Performance

Response Time = Queue+I/O device service time

User
Thread

Queue
[OS Paths]

C
ontrolle

r

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization
approaches 100%

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Page 6

Lec 16.213/31/08 Joseph CS162 ©UCB Spring 2008

DeparturesArrivals

Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state
behavior  Arrival rate = Departure rate

• Little’s Law:
Mean # tasks in system = arrival rate x mean response time
– Observed by many, Little was first to prove
– Simple interpretation: you should see the same number of
tasks in queue when entering as when leaving.

• Applies to any system in equilibrium, as long as nothing
in black box is creating or destroying tasks
– Typical queuing theory doesn’t deal with transient
behavior, only steady-state behavior

Queue

C
ontrolle

r

Disk

Lec 16.223/31/08 Joseph CS162 ©UCB Spring 2008

Background: Use of random distributions

• Server spends variable time with customers

– Mean (Average) m1 = p(T)T

– Variance 2 = p(T)(T-m1)2 = p(T)T2-m12

– Squared coefficient of variance: C = 2/m12

Aggregate description of the distribution.

• Important values of C:
– No variance or deterministic  C=0
– ―memoryless‖ or exponential  C=1

» Past tells nothing about future
» Many complex systems (or aggregates)

well described as memoryless

– Disk response times C  1.5 (wider variance  long tail)

Mean
(m1)

mean

Memoryless

Distribution
of service times



Lec 16.233/31/08 Joseph CS162 ©UCB Spring 2008

A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (―m1‖)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ =   Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue =   Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1):

» Called M/M/1 queue: Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server:

» Called M/G/1 queue: Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate


Queue Server
Service Rate
μ=1/Tser

Lec 16.243/31/08 Joseph CS162 ©UCB Spring 2008

A Little Queuing Theory: An Example

• Example Usage Statistics:
– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions:
– How utilized is the disk?

» Ans: server utilization, u = Tser
– What is the average time spent in the queue?

» Ans: Tq
– What is the number of requests in the queue?

» Ans: Lq = Tq (Little’s law)
– What is the avg response time for disk request?

» Ans: Tsys = Tq + Tser
• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) =  x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) =  x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Page 7

Lec 16.253/31/08 Joseph CS162 ©UCB Spring 2008

Summary

• Working Set: Set of pgs touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns: block, char, net devices
– Different Access Timing: Non-/Blocking, Asynchronous

• I/O Controllers: Hardware that controls actual device
– CPU accesses thru I/O insts, ld/st to special phy memory
– Report results thru interrupts or a status register polling

• Device Driver: Device-specific code in kernel
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency  

Tq = Tser x ½(1+C) x u/(1 – u))

