CS162
Operating Systems and
Systems Programming
Lecture 18

File Systems, Naming, and Directories

April 7, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Review: Multilevel Indexed Files (UNIX 4.1)

+ Multilevel Indexed Files: =
Like multilevel address owners (2)
translation imestamps @) —
(fr‘om UNIX 4.1 BSD) size block count J —

- Key idea: efficient for small FE
fils. but still allow big files |

double indiract _|

triple indirect

- File hdr contains 13 pointers
- Fixed size table, pointers not all equivalent
- This header is called an "inode” in UNIX

+ File Header format:
- First 10 pointers are to data blocks
- Ptr 11 points to “indirect block” containing 256 block ptrs
- Pointer 12 points to “doubly indirect block” containing 256

indirect block ptrs for total of 64K blocks

- Pointer 13 points to a triply indirect block (16M blocks
7/08 Joseph €5162 ©UCB Spring 2008 Lec 18.3

4/

data
single indirect —A.B::_‘ _-B:.’@
data | E -

Page 1

Track

Review: Magnetic Disk Characteristic/ | sector
* Cylinder: all the tracks under the
head at a given point on all surface Head
* Read/write data is a three-stage Cylinder
process: “Platter

- Seek time: position the head/arm over the proper track
(into proper cylinder)

- Rotational latency: wait for the desired sector
to rotate under the read/write head

- Transfer time: transfer a block of bits (sector)
under the read-write head

+ Disk Latency = Queueing Time + Controller time +

Seek Time + Rotation Time + Xfer Time

Software
Queue
(Device Driver)

+ Highest Bandwidth:
- transfer large group of blocks sequentially from one track
4/7/08 Joseph CS5162 ©UCB Spring 2008 Lec 18.2

Media Time
(Seek+Rot+Xfer)

—p]

2]|0u4u0D)|
JDMPJUDH
4|nsay

4sanbay

B

- Sample file in multilevel ot

Review: Example of Multilevel Indexed Files

owners (2)

indexed format:

- How mang accesses for
block #23? (assume file

size block count

data

header accessed on open)? _
» Two: One for indirect block, —J'-;

one for data direct blocks —]

timastamps (3)

+ data

- How about block #5? i —
» One: One for data singlo '"""F-‘“'-"B:::ﬁ: __B:;@

- Block #340?
» Three: double indirect block,
indirect block, and data

double indirect_| 7 { data |
triple indiract H—E:;@
data
+ UNIX 4.1 Pros and cons
- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
- Cons: Lots of seeks
Very large files must read many indirect blocks (four
I/Os per block!)

Joseph C5162 ©UCB Spring 2008

4/7/08 Lec 18.4

Review: Multilevel Indexed Files (UNIX 4.1)

+ Basic technique places an upper limit on file size that
is approximately 16Gbytes

- Designers thought this was bigger than anKThing anyone
would need. Much bigger than a disk at the time..

- Fallacy: today, EOS producing 2TB of data per day

- Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks

- On small files, no indirection needed

4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.5

File Allocation for Cray-1 DEMOS

basesize___S1>~ ';OUP
N E 4| Basic Segmentation Structure:
-3 Each segment contiguous on disk
3]
file header 3.9

- DEMOS: File system structure similar to segmentation
- Idea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
- Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)
* Header: table of base & size (10 "block group” pointers)
- Each block chunk is a contiguous group of disk blocks
- Sequential reads within a block chunk can proceed at high
speed - similar to continuous allocation
+ How do you find an available block group?

7;oélse freelist bitmap to find block of O's.

4/ Joseph CS162 ©UCB Spring 2008 Lec 18.7

Page 2

Goals for Today

+ File Systems
- Structure, Naming, Directories
* Caching in File Systems

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
4/7/08 Joseph €5162 ©UCB Spring 2008 Lec 18.6

Large File Version of DEMOS

i base size diSK_grou
basias[ze/___.__‘_ ..-‘:“P

N N 3.3

:E ‘t

3.6

O é_

. indirect e
file header block group 3.9

+ What if need much bigger files?
- If need more than 107groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
- Suppose 1000 blocks in a block group = 806B max file
» Assuming 8KB blocks, 8byte enfries=
. (10 ptrsx1024 r‘oups/ﬁfr‘xlOOO blocks/group)*8K =80GB
- Discussion of DEMOS scheme
- Pros: Fast sequential access, Free areas merge simpP
Easy to find free block groups (when disk not ullg
- Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead dllocation/access
- Full disk = ‘worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed)
08

4/7/ Joseph C5162 ®UCB Spring 2008 Lec 18.8

How to keep DEMOS performing well?

* In many systems, disks are always full
- CS department growth: 300 GB to 1TB in a year
» That's 26B/day! (Now at 65+50 TB!)

- How to fix? Announce that disk space is getting low, so
please delete files?

» Don't really work: people try to store their data faster
- Sidebar: Perhaps we are getting out of this mode with
new disks... However, let's assume disks full for now
+ Solution:
- Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
- How much reserve do you need?
» In practice, 10% seems like enough
- Tradeoff: pay for more disk, get contiguous allocation

» Since seeks so expensive for performance, this is a very
good tradeoff

4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.9
UNIX BSD 4.2
+ Same as I (same file header and Triply indirect
blocks), except incorporated ideas from DEMOS:

- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning (mentioned next slide)
* Problem: When create a file, don't know how big it
will become (in UNIX, most writes are by appending)
- How much contiguous space do you allocate for a file?
- In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc
- In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Also in BSD 4.2: store files from same directory near
each other

+ Fast File System (FFS)

- Allocation and placement policies for BSD 4.2

4/7/08 Joseph CS162 ©UCB Spring 2008 Lec 18.11

Page 3

Administrivia

* Plan Ahead: this month will be difficultll
- Project deadlines every week

* Project #3 design doc due today at 11:59pm

- Midterm #2 is next Wednesday (April 16)
- 6-7:30pm in 10 Evans
- All material from projects 1-3, lectures #9 (2/25) to
#19 (4/9)
» OS Hisfo?, Services, and Structure; CPU Scheduling:

Kernel and Address Spaces: Address Translation, Cachin
and TLBs: Demand Paging: I/O Systems; Filesystems, Disk
Management, Naming,” and Directories; Distributed
Systems

- Email cs162@cory with conflicts

* Projects have a grading standard

4/7/08 Joseph €5162 ©UCB Spring 2008 Lec 18.10

Attack of the Rotational Delay

+ Problem 2: Missingb blocks due to rotational delay
- Issue: Read one’block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

Skip SectO\
s) I
@ @ Track Buffer
(Holds complete track)

- Solutionl: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a
track: give time for processing to overlap rotation
- Solution2: Read ahead: read next block right after first,
even if application hasn't asked for it yet:
» This can be done either by OS (read ahead)
» By disk itself (ar-ack buffers). Many disk controllers have
internal RAM that allows them to read a complete track
* Important Aside: Modern disks+controllers do many
corprplex things “under the covers”
- Track buffers, elevator algorithms, bad block filtering
4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.12

How do we actually access files?

- All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)
- Once you load the header structure, all the other blocks
of the file are locatable
* Question: how does the user ask for a particular file?
- One option: user specifies an inode by a number (index).
» Imagine: open("14553344")
- Better option: specify by textual name
» Have to map name—inumber
- Another option: Icon
» This is how Apple made its money. 6Graphical user
interfaces. Point to a file and click.

* Naming: The process by which a system translates from

user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
- For global file systems, data may be spread over
globe=need to translate from strings or icons to some

8combim:(*rion of ?hzsical server location and inumber
0

4/7/0 seph C5162 ©UCB Spring 2008 Lec 18.13

Directory Organization

- Directories organized into a hierarchical structure
- Seems standard, but in early 70's it wasn't
- Permits much easier organization of data structures

* Entries in directory can be either files or
directories

- Files named by ordered set (e.g., /programs/p/list)

4/7/08 Joseph CS162 ©UCB Spring 2008 Lec 18.15

Page 4

Directories

+ Directory: a relation used for naming
- Just a table of (file name, inumber) pairs

+ How are directories constructed?
- Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files
- Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

+ How are directories modified?
- Originally, direct read/write of special file
- System calls for manipulation: mkdir, rmdir
- Ties to file creation/destruction
» On creating a file by name, new inode grabbed and
associated with new file in particular directory

4/7/08 Joseph €5162 ©UCB Spring 2008 Lec 18.14

Directory Structure

| text ‘ mail caunl|buok bouk| mail ‘unhc‘x‘ hyp |

\

e oond

L1
D)

e pox

* Not really a hierarchy!
- Many systems allow directory structure to be organized
as an acyclic graph or even a (potentially) cyclic graph
- Hard Links: different names for the same f)ille
» Multiple directory entries point at the same file
- Soft Links: “shortcut” pointers to other files
» Implemented by storing the logical name of actual file
* Name Resolution: The process of converting a logical
name into a physical resource (like a file)
- Traverse succession of directories until reach target file

- Global file system: MGY be spread across the network
4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.16

Directory Structure (Con't)

How many disk accesses to resolve “/my/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data block for root
» Table of file name/index pairs. Search linearly - ok since
directories typically very small
- Read in file header for “my"”
- Read in first data block for "my”: search for “book"
- Read in file header for “book”
- Read in first data block for “book”; search for “count”
- Read in file header for “count”

* Current working directory: Per-address-space pointer
to a directory %inode) used for resolving file names
- Allows user to specify relative filename instead of
absolute path (say CWD="/my/book” can resolve “count”)

4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.17

Where are inodes stored?

+ Later versions of UNIX moved the header
information to be closer to the data blocks
- Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an Is
of that directory run fast).
- Pros:

» UNIX BSD 4.2 puts a portion of the file header
array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder=no
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

- Part of the Fast File System (FFS)

» General optimization to avoid seeks
Joseph CS162 ©UCB Spring 2008

4/7/08 Lec 18.19

Page 5

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored anywhere near the data blocks.
To read a small file, seek to get header, see
back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

4/7/08 Joseph €5162 ©UCB Spring 2008 Lec 18.18

BREAK

In-Memory File System Structures

directory structure

- Open system call:
- Resolves file name, finds file control block (inode)
- Makes entries in per-process and system-wide tables
- Returns index (called “file handle”) in open-file table

\

per-process
open-file table o o table

/ o blocks
by e
T

Re-controf block

+ Read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.21

File System Caching (con't)

+ Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once
- Too little memory to file system cache = manz
applications may run slowly (disk caching not effective)
- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
+ Read Ahead Prefetching: fetch sequential blocks early
- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)
- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications
- How much to prefetch?
» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among
concurrent file requests

4/7/08 Joseph CS162 ©UCB Spring 2008 Lec 18.23

Page 6

File System Caching
- Key Idear Exploit focality by caching data i memory

- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain "dirty” blocks (blocks yet on disk)
+ Replacement policy? LRU
- Can afford overhead of timestamps for each disk block
- Advantages:
» Works very well for name translation

» Works well in general as long as memor?' is big enough to
accommodate a host's working set of files.

- Disadvantages:
» Fails when some aﬂplicaﬁon scans through file system,
thereby flushing the cache with data used only once
» Example: find . -exec grep foo {} \;
+ Other Replacement Policies?
- Some systems allow applications to request other policies
- Example, 'Use Once':

» File system can discard blocks as soon as they are useg
e

4/7/08 oseph €CS162 ©UCB Spring 2008 Lec 18.22

File System Caching (con't)

- Delayed Writes: Writes to files not immediately sent
out to disk
- Instead, write () copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other application tries to read data before
written to disk, file system will read from cache

- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests

» 1?isk a1lrl.c|:caﬁon algorithm can be run with correct size value
or a file

» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)

- Disadvantages
» What if system crashes before file has been written out?

» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inode!)

4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.24

Summary

+ Cray DEMOS: optimization for sequential access
- Inode holds set of disk ranges, similar to segmentation

4.2 BSD Multilevel index files
- Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc
- Optimizations for sequential access: start new files in
open ranges of free blocks
- Rotational Optimization

+ Naming: act of translating from user-visible names to
actual system resources
- Directories used for naming for local file systems

- Buffer cache used to increase performance
- Read Ahead Prefetching and Delayed Writes

4/7/08 Joseph C5162 ©UCB Spring 2008 Lec 18.25

Page 7

