
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 18

File Systems, Naming, and Directories

April 7, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 18.24/7/08 Joseph CS162 ©UCB Spring 2008

Review: Magnetic Disk Characteristic

• Cylinder: all the tracks under the
head at a given point on all surface

• Read/write data is a three-stage
process:
– Seek time: position the head/arm over the proper track
(into proper cylinder)

– Rotational latency: wait for the desired sector
to rotate under the read/write head

– Transfer time: transfer a block of bits (sector)
under the read-write head

• Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth:
– transfer large group of blocks sequentially from one track

Sector

Track

Cylinder

Head

Platter

Software
Queue

(Device Driver)

H
a
rd

w
a
re

C
ontrolle

r
Media Time

(Seek+Rot+Xfer)

R
e
que

st

R
e
sult

Lec 18.34/7/08 Joseph CS162 ©UCB Spring 2008

Review: Multilevel Indexed Files (UNIX 4.1)

• Multilevel Indexed Files:
Like multilevel address
translation
(from UNIX 4.1 BSD)
– Key idea: efficient for small
files, but still allow big files

• File hdr contains 13 pointers
– Fixed size table, pointers not all equivalent
– This header is called an “inode” in UNIX

• File Header format:
– First 10 pointers are to data blocks
– Ptr 11 points to “indirect block” containing 256 block ptrs
– Pointer 12 points to “doubly indirect block” containing 256
indirect block ptrs for total of 64K blocks

– Pointer 13 points to a triply indirect block (16M blocks)
Lec 18.44/7/08 Joseph CS162 ©UCB Spring 2008

Review: Example of Multilevel Indexed Files

• Sample file in multilevel
indexed format:
– How many accesses for
block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data

• UNIX 4.1 Pros and cons
– Pros: Simple (more or less)

Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect blocks (four
I/Os per block!)

Page 2

Lec 18.54/7/08 Joseph CS162 ©UCB Spring 2008

Review: Multilevel Indexed Files (UNIX 4.1)

• Basic technique places an upper limit on file size that
is approximately 16Gbytes

– Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time…

– Fallacy: today, EOS producing 2TB of data per day

• Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks

– On small files, no indirection needed

Lec 18.64/7/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• File Systems

– Structure, Naming, Directories

• Caching in File Systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 18.74/7/08 Joseph CS162 ©UCB Spring 2008

File Allocation for Cray-1 DEMOS

• DEMOS: File system structure similar to segmentation
– Idea: reduce disk seeks by

» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation

– Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)

• Header: table of base & size (10 “block group” pointers)
– Each block chunk is a contiguous group of disk blocks
– Sequential reads within a block chunk can proceed at high
speed – similar to continuous allocation

• How do you find an available block group?
– Use freelist bitmap to find block of 0‟s.

basesize

file header

1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk group

Basic Segmentation Structure:
Each segment contiguous on disk

Lec 18.84/7/08 Joseph CS162 ©UCB Spring 2008

Large File Version of DEMOS

• What if need much bigger files?
– If need more than 10 groups, set flag in header: BIGFILE

» Each table entry now points to an indirect block group
– Suppose 1000 blocks in a block group 80GB max file

» Assuming 8KB blocks, 8byte entries
(10 ptrs1024 groups/ptr1000 blocks/group)*8K =80GB

• Discussion of DEMOS scheme
– Pros: Fast sequential access, Free areas merge simply

Easy to find free block groups (when disk not full)
– Cons: Disk full No long runs of blocks (fragmentation),

so high overhead allocation/access
– Full disk worst of 4.1BSD (lots of seeks) with worst of
continuous allocation (lots of recompaction needed)

file header

base size 1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk groupbase size

indirect
block group

Page 3

Lec 18.94/7/08 Joseph CS162 ©UCB Spring 2008

How to keep DEMOS performing well?

• In many systems, disks are always full
– CS department growth: 300 GB to 1TB in a year

» That‟s 2GB/day! (Now at 65+50 TB!)

– How to fix? Announce that disk space is getting low, so
please delete files?

» Don‟t really work: people try to store their data faster

– Sidebar: Perhaps we are getting out of this mode with
new disks… However, let‟s assume disks full for now

• Solution:
– Don‟t let disks get completely full: reserve portion

» Free count = # blocks free in bitmap
» Scheme: Don‟t allocate data if count < reserve

– How much reserve do you need?
» In practice, 10% seems like enough

– Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very

good tradeoff

Lec 18.104/7/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Plan Ahead: this month will be difficult!!

– Project deadlines every week

• Project #3 design doc due today at 11:59pm

• Midterm #2 is next Wednesday (April 16th)
– 6-7:30pm in 10 Evans
– All material from projects 1-3, lectures #9 (2/25) to
#19 (4/9)

» OS History, Services, and Structure; CPU Scheduling;
Kernel and Address Spaces; Address Translation, Caching
and TLBs; Demand Paging; I/O Systems; Filesystems, Disk
Management, Naming, and Directories; Distributed
Systems

– Email cs162@cory with conflicts

• Projects have a grading standard

Lec 18.114/7/08 Joseph CS162 ©UCB Spring 2008

UNIX BSD 4.2
• Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from DEMOS:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned next slide)

• Problem: When create a file, don‟t know how big it
will become (in UNIX, most writes are by appending)
– How much contiguous space do you allocate for a file?
– In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc

– In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in

bitmap, then choose new range of blocks
– Also in BSD 4.2: store files from same directory near
each other

• Fast File System (FFS)
– Allocation and placement policies for BSD 4.2

Lec 18.124/7/08 Joseph CS162 ©UCB Spring 2008

Attack of the Rotational Delay

• Problem 2: Missing blocks due to rotational delay
– Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a

track: give time for processing to overlap rotation
– Solution2: Read ahead: read next block right after first,
even if application hasn‟t asked for it yet.

» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have

internal RAM that allows them to read a complete track
• Important Aside: Modern disks+controllers do many

complex things “under the covers”
– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Page 4

Lec 18.134/7/08 Joseph CS162 ©UCB Spring 2008

How do we actually access files?

• All information about a file contained in its file header
– UNIX calls this an “inode”

» Inodes are global resources identified by index (“inumber”)
– Once you load the header structure, all the other blocks
of the file are locatable

• Question: how does the user ask for a particular file?
– One option: user specifies an inode by a number (index).

» Imagine: open(“14553344”)
– Better option: specify by textual name

» Have to map nameinumber
– Another option: Icon

» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.

• Naming: The process by which a system translates from
user-visible names to system resources
– In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes

– For global file systems, data may be spread over
globeneed to translate from strings or icons to some
combination of physical server location and inumber

Lec 18.144/7/08 Joseph CS162 ©UCB Spring 2008

Directories

• Directory: a relation used for naming
– Just a table of (file name, inumber) pairs

• How are directories constructed?
– Directories often stored in files

» Reuse of existing mechanism
» Directory named by inode/inumber like other files

– Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

• How are directories modified?
– Originally, direct read/write of special file
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

Lec 18.154/7/08 Joseph CS162 ©UCB Spring 2008

Directory Organization

• Directories organized into a hierarchical structure

– Seems standard, but in early 70‟s it wasn‟t

– Permits much easier organization of data structures

• Entries in directory can be either files or
directories

• Files named by ordered set (e.g., /programs/p/list)

Lec 18.164/7/08 Joseph CS162 ©UCB Spring 2008

Directory Structure

• Not really a hierarchy!
– Many systems allow directory structure to be organized
as an acyclic graph or even a (potentially) cyclic graph

– Hard Links: different names for the same file
» Multiple directory entries point at the same file

– Soft Links: “shortcut” pointers to other files
» Implemented by storing the logical name of actual file

• Name Resolution: The process of converting a logical
name into a physical resource (like a file)
– Traverse succession of directories until reach target file
– Global file system: May be spread across the network

Page 5

Lec 18.174/7/08 Joseph CS162 ©UCB Spring 2008

Directory Structure (Con‟t)

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs. Search linearly – ok since
directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names
– Allows user to specify relative filename instead of
absolute path (say CWD=“/my/book” can resolve “count”)

Lec 18.184/7/08 Joseph CS162 ©UCB Spring 2008

Where are inodes stored?

• In early UNIX and DOS/Windows‟ FAT file
system, headers stored in special array in
outermost cylinders
– Header not stored anywhere near the data blocks.
To read a small file, seek to get header, see
back to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 18.194/7/08 Joseph CS162 ©UCB Spring 2008

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks
– Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an ls
of that directory run fast).

– Pros:
» UNIX BSD 4.2 puts a portion of the file header

array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinderno
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

– Part of the Fast File System (FFS)
» General optimization to avoid seeks

BREAK

Page 6

Lec 18.214/7/08 Joseph CS162 ©UCB Spring 2008

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Structures

Lec 18.224/7/08 Joseph CS162 ©UCB Spring 2008

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
– Can contain “dirty” blocks (blocks yet on disk)

• Replacement policy? LRU
– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host‟s working set of files.
– Disadvantages:

» Fails when some application scans through file system,
thereby flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, „Use Once‟:

» File system can discard blocks as soon as they are used

Lec 18.234/7/08 Joseph CS162 ©UCB Spring 2008

File System Caching (con‟t)

• Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
– Too much memory to the file system cache won‟t be
able to run many applications at once

– Too little memory to file system cache many
applications may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests

Lec 18.244/7/08 Joseph CS162 ©UCB Spring 2008

File System Caching (con‟t)

• Delayed Writes: Writes to files not immediately sent
out to disk
– Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other application tries to read data before
written to disk, file system will read from cache

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value

for a file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don‟t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file

has been written out? (lose pointer to inode!)

Page 7

Lec 18.254/7/08 Joseph CS162 ©UCB Spring 2008

Summary

• Cray DEMOS: optimization for sequential access
– Inode holds set of disk ranges, similar to segmentation

• 4.2 BSD Multilevel index files
– Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc

– Optimizations for sequential access: start new files in
open ranges of free blocks

– Rotational Optimization

• Naming: act of translating from user-visible names to
actual system resources
– Directories used for naming for local file systems

• Buffer cache used to increase performance
– Read Ahead Prefetching and Delayed Writes

