
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems continued
Distributed Systems

April 9, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 19.24/9/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Data Durability

• Beginning of Distributed Systems Discussion

– Lisp/ML map/fold review

– MapReduce overview

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 19.34/9/08 Joseph CS162 ©UCB Spring 2008

Important “ilities”

• Availability: the probability that the system can
accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 19.44/9/08 Joseph CS162 ©UCB Spring 2008

How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is

struck by lightning….
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may
not even know that there is more than one disk in use

Page 2

Lec 19.54/9/08 Joseph CS162 ©UCB Spring 2008

Log Structured and Journaled File Systems
• Better reliability through use of log

– All changes are treated as transactions
» A transaction either happens completely or not at all

– A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately,
data preserved in the log

• Difference between “Log Structured” and “Journaled”
– Log Structured Filesystem (LFS): data stays in log form
– Journaled Filesystem: Log used for recovery

• For Journaled system:
– Log used to asynchronously update filesystem

» Log entries removed after used
– After crash:

» Remaining transactions in the log performed (“Redo”)

• Examples of Journaled File Systems:
– Ext3 (Linux), XFS (Unix), NTFS (Windows)

Lec 19.64/9/08 Joseph CS162 ©UCB Spring 2008

Functional Programming Review

• Functional operations do not modify data
structures – they always create new ones

• Original data still exists in unmodified form

• Data flows are implicit in program design

• Order of operations does not matter
– fun foo(L: int list) = sum(L) + mul(L) + length(L)

– Order of sum(), mul(), length() does not matter,
since they do not modify L

Lec 19.74/9/08 Joseph CS162 ©UCB Spring 2008

Functional Updates Do Not Modify Structures

• fun append(x, lst) =
let lst' = reverse lst in

reverse (x :: lst')

• The append() function above reverses a list, adds
a new element to the front, and returns all of
that, reversed, which appends an item

• But, it never modifies lst!

Lec 19.84/9/08 Joseph CS162 ©UCB Spring 2008

Functions Can Be Used As Arguments

• fun DoDouble(f, x) = f (f x)

• It does not matter what f does to its argument;
DoDouble() will do it twice

• What is the type of this function?

Page 3

Lec 19.94/9/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Midterm #2 is next Wednesday (April 16th)
– 6-7:30pm in 10 Evans
– Covers projects 1-3, lectures #9 (2/25) to #19 (4/9)

» OS History, Services, and Structure; CPU Scheduling;
Kernel and Address Spaces; Address Translation, Caching
and TLBs; Demand Paging; I/O Systems; Filesystems, Disk
Management, Naming, and Directories; Distributed
Systems

• TA Review session TBA

Lec 19.104/9/08 Joseph CS162 ©UCB Spring 2008

Map

map f lst: (’a’b)  (’a list)  (’b list)

Creates a new list by applying f to each
element of the input list; returns output
in order

f f f f f f

Lec 19.114/9/08 Joseph CS162 ©UCB Spring 2008

Fold

fold f x0 lst: ('a*'b'b)'b('a list)'b

Moves across a list, applying f to each
element plus an accumulator

f returns the next accumulator value,
which is combined with the next element
of the list

f f f f f returned

initial

Lec 19.124/9/08 Joseph CS162 ©UCB Spring 2008

fold left vs. fold right

• Order of list elements can be significant

– Fold left moves left-to-right across the list

– Fold right moves from right-to-left

Standard ML Implementation:

fun foldl f a [] = a

| foldl f a (x::xs) = foldl f (f(x, a)) xs

fun foldr f a [] = a

| foldr f a (x::xs) = f(x, (foldr f a xs))

Page 4

Lec 19.134/9/08 Joseph CS162 ©UCB Spring 2008

Example

• fun foo(l: int list) = sum(l) + mul(l) + length(l)

• How can we implement this?

• fun sum(lst) = foldl (fn (x,a)=>x+a) 0 lst

• fun mul(lst) = foldl (fn (x,a)=>x*a) 1 lst

• fun length(lst) = foldl (fn (x,a)=>1+a) 0 lst

Lec 19.144/9/08 Joseph CS162 ©UCB Spring 2008

More Complicated Problems

• More complicated fold problem

– Given a list of numbers, how can we generate a list
of partial sums?

» e.g.: [1, 4, 8, 3, 7, 9] 
[0, 1, 5, 13, 16, 23, 32]

• More complicated map problem
– Given a list of words, can we: reverse the letters in
each word, and reverse the whole list, so it all
comes out backwards?

» e.g.: [“my”, “happy”, “cat”]  [“tac”, “yppah”, “ym”]

Lec 19.154/9/08 Joseph CS162 ©UCB Spring 2008

map Implementation

• This implementation moves left-to-right across
the list, mapping elements one at a time

• … But does it need to?

fun map f [] = []

| map f (x::xs) = (f x) :: (map f xs)

Lec 19.164/9/08 Joseph CS162 ©UCB Spring 2008

Implicit Parallelism In map

• In a purely functional setting, elements of a list
being computed by map cannot see the effects of
the computations on other elements

• If order of application of f to elements in list is
commutative, we can reorder or parallelize
execution

• This is the “secret” that MapReduce exploits!

Page 5

BREAK

Lec 19.184/9/08 Joseph CS162 ©UCB Spring 2008

MapReduce

• Motivation: Large Scale Data Processing

– Want to process lots of data (> 1 TB)

– Want to parallelize across hundreds/thousands of CPUs

– Want to make this easy…

• Features:

– Automatic parallelization & distribution

– Fault-tolerant

– Provides status and monitoring tools

– Clean abstraction for programmers

• Hadoop:

– Open-source version of Google’s MapReduce

Lec 19.194/9/08 Joseph CS162 ©UCB Spring 2008

Programming Model

• Borrows from functional programming

• Users implement interface of two functions:

– map (in_key, in_value) ->

(out_key, intermediate_value) list

– reduce (out_key, intermediate_value list) ->

out_value list

Lec 19.204/9/08 Joseph CS162 ©UCB Spring 2008

Functions

• Map:

– Records from the data source (lines out of files,
rows of a database, etc) are fed into the map
function as (key, value) pairs

» e.g., (filename, line)

– map() produces one or more intermediate values
along with an output key from the input

• Reduce:

– After the map phase is over, all the intermediate
values for a given output key are combined
together into a list

– reduce() combines those intermediate values into
one or more final values for that same output key

» (in practice, usually only one final value per key)

Page 6

Lec 19.214/9/08 Joseph CS162 ©UCB Spring 2008

Data store 1 Data store n
map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

Input key*value

pairs

Input key*value

pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,

intermediate

values

key 2,

intermediate

values

key 3,

intermediate

values

final key 1

values

final key 2

values

final key 3

values

...

MapReduce

Lec 19.224/9/08 Joseph CS162 ©UCB Spring 2008

Parallelism

• map() functions:

– Run in parallel, creating different intermediate
values from different input data sets

• reduce() functions:
– Also run in parallel, each working on a different
output key

• All values are processed independently

• Bottleneck: reduce phase can'’t start until map
phase is completely finished

Lec 19.234/9/08 Joseph CS162 ©UCB Spring 2008

Example: Count word occurrences

map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

Lec 19.244/9/08 Joseph CS162 ©UCB Spring 2008

Example vs. Actual Source Code

• Example is written in pseudo-code

– Actual Google implementation is a C++ library with
Python/Java interfaces

– Hadoop implementation is in Java

• True code is somewhat more involved
– Defines how input key/values are divided up,
accessed, …

• Locality:

– Master program divvies up tasks based on location
of data: tries to have map() tasks on same
machine as physical file data, or at least same
rack

• map() task inputs are divided into 64 MB blocks:
same size as Google File System chunks

Page 7

Lec 19.254/9/08 Joseph CS162 ©UCB Spring 2008

MapReduce Techniques

• Locality

– Master pgm places map() tasks based on data location

– map() task inputs are divided into 64 MB blocks

• Fault-Tolerance

– Master detects worker failures
» Re-executes completed & in-progress map() tasks

» Re-executes in-progress reduce() tasks

– Master notices particular input key/values cause crashes
in map(), and skips those values on re-exec

• Optimization – speculative execution
– No reduce can start until map is complete:

» A single slow machine rate-limits the whole process

– Master redundantly executes “slow ” map tasks
» Uses results of first copy to finish – why is this safe?

Lec 19.264/9/08 Joseph CS162 ©UCB Spring 2008

Summary

• Important system properties
– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• MapReduce has proven to be a useful abstraction
– Functional programming paradigm can be applied to
large-scale applications

– Greatly simplifies large-scale computations at Google,
Yahoo!, Facebook, and others

– Fun to use: focus on problem, let library deal with
messy details

