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Goals for Today

• Data Durability

• Beginning of Distributed Systems Discussion

– Lisp/ML map/fold review

– MapReduce overview

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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Important “ilities”

• Availability: the probability that the system can 
accept and process requests
– Often measured in “nines” of probability.  So, a 99.9% 
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data 

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on 
pyramids was very durable, but could not be accessed 
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to 
perform its required functions under stated conditions 
for a specified period of time (IEEE definition)
– Usually stronger than simply availability: means that the 
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk 
crashes, other problems
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How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting 

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects 

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM 
or NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate!  More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is 

struck by lightning…. 
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may 
not even know that there is more than one disk in use
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Log Structured and Journaled File Systems
• Better reliability through use of log

– All changes are treated as transactions
» A transaction either happens completely or not at all

– A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, 
data preserved in the log

• Difference between “Log Structured” and “Journaled”
– Log Structured Filesystem (LFS): data stays in log form
– Journaled Filesystem: Log used for recovery

• For Journaled system:
– Log used to asynchronously update filesystem

» Log entries removed after used
– After crash:

» Remaining transactions in the log performed (“Redo”)

• Examples of Journaled File Systems: 
– Ext3 (Linux), XFS (Unix), NTFS (Windows)
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Functional Programming Review

• Functional operations do not modify data 
structures – they always create new ones 

• Original data still exists in unmodified form

• Data flows are implicit in program design

• Order of operations does not matter
– fun foo(L: int list) = sum(L) + mul(L) + length(L)

– Order of sum(), mul(), length() does not matter, 
since they do not modify L
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Functional Updates Do Not Modify Structures

• fun append(x, lst) = 
let lst' = reverse lst in

reverse ( x :: lst' )

• The append() function above reverses a list, adds 
a new element to the front, and returns all of 
that, reversed, which appends an item 

• But, it never modifies lst!
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Functions Can Be Used As Arguments

• fun DoDouble(f, x) = f (f x)

• It does not matter what f does to its argument; 
DoDouble() will do it twice

• What is the type of this function?
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Administrivia

• Midterm #2 is next Wednesday (April 16th)
– 6-7:30pm in 10 Evans
– Covers projects 1-3, lectures #9 (2/25) to #19 (4/9)

» OS History, Services, and Structure; CPU Scheduling; 
Kernel and Address Spaces; Address Translation, Caching 
and TLBs; Demand Paging; I/O Systems; Filesystems, Disk 
Management, Naming, and Directories; Distributed 
Systems

• TA Review session TBA
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Map

map f lst: (’a’b)  (’a list)  (’b list)

Creates a new list by applying f to each 
element of the input list; returns output 
in order

f f f f f f
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Fold

fold f x0 lst: ('a*'b'b)'b('a list)'b

Moves across a list, applying f to each 
element plus an accumulator

f returns the next accumulator value, 
which is combined with the next element 
of the list

f f f f f returned

initial
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fold left vs. fold right

• Order of list elements can be significant

– Fold left moves left-to-right across the list

– Fold right moves from right-to-left

Standard ML Implementation:

fun foldl f a []      = a

| foldl f a (x::xs) = foldl f (f(x, a)) xs

fun foldr f a []      = a

| foldr f a (x::xs) = f(x, (foldr f a xs))
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Example

• fun foo(l: int list) = sum(l) + mul(l) + length(l)

• How can we implement this?

• fun sum(lst) = foldl (fn (x,a)=>x+a) 0 lst

• fun mul(lst) = foldl (fn (x,a)=>x*a) 1 lst

• fun length(lst) = foldl (fn (x,a)=>1+a) 0 lst
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More Complicated Problems

• More complicated fold problem

– Given a list of numbers, how can we generate a list 
of partial sums?

» e.g.:  [1, 4, 8, 3, 7, 9] 
[0, 1, 5, 13, 16, 23, 32] 

• More complicated map problem
– Given a list of words, can we: reverse the letters in 
each word, and reverse the whole list, so it all 
comes out backwards?

» e.g.: [“my”, “happy”, “cat”]  [“tac”, “yppah”, “ym”]
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map Implementation

• This implementation moves left-to-right across 
the list, mapping elements one at a time

• … But does it need to?

fun map f []      = []

| map f (x::xs) = (f x) :: (map f xs)
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Implicit Parallelism In map

• In a purely functional setting, elements of a list 
being computed by map cannot see the effects of 
the computations on other elements

• If order of application of f to elements in list is 
commutative, we can reorder or parallelize 
execution

• This is the “secret” that MapReduce exploits!
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BREAK
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MapReduce

• Motivation: Large Scale Data Processing

– Want to process lots of data (> 1 TB)

– Want to parallelize across hundreds/thousands of CPUs

– Want to make this easy…

• Features:

– Automatic parallelization & distribution

– Fault-tolerant

– Provides status and monitoring tools

– Clean abstraction for programmers

• Hadoop:

– Open-source version of Google’s MapReduce
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Programming Model

• Borrows from functional programming

• Users implement interface of two functions:

– map  (in_key, in_value) -> 

(out_key, intermediate_value) list

– reduce (out_key, intermediate_value list) ->

out_value list
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Functions

• Map:

– Records from the data source (lines out of files, 
rows of a database, etc) are fed into the map 
function as (key, value) pairs 

» e.g., (filename, line)

– map() produces one or more intermediate values 
along with an output key from the input

• Reduce:

– After the map phase is over, all the intermediate 
values for a given output key are combined 
together into a list

– reduce() combines those intermediate values into 
one or more final values for that same output key 

» (in practice, usually only one final value per key)
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MapReduce
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Parallelism

• map() functions:

– Run in parallel, creating different intermediate 
values from different input data sets

• reduce() functions:
– Also run in parallel, each working on a different 
output key

• All values are processed independently

• Bottleneck: reduce phase can'’t start until map 
phase is completely finished
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Example: Count word occurrences

map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents

for each word w in input_value: 

EmitIntermediate(w, "1"); 

reduce(String output_key, Iterator intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += ParseInt(v);

Emit(AsString(result)); 
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Example vs. Actual Source Code

• Example is written in pseudo-code

– Actual Google implementation is a C++ library with 
Python/Java interfaces

– Hadoop implementation is in Java

• True code is somewhat more involved
– Defines how input key/values are divided up, 
accessed, …

• Locality:

– Master program divvies up tasks based on location 
of data: tries to have map() tasks on same 
machine as physical file data, or at least same 
rack

• map() task inputs are divided into 64 MB blocks: 
same size as Google File System chunks
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MapReduce Techniques

• Locality

– Master pgm places map() tasks based on data location

– map() task inputs are divided into 64 MB blocks

• Fault-Tolerance

– Master detects worker failures
» Re-executes completed & in-progress map() tasks

» Re-executes in-progress reduce() tasks

– Master notices particular input key/values cause crashes 
in map(), and skips those values on re-exec

• Optimization – speculative execution
– No reduce can start until map is complete:

» A single slow machine rate-limits the whole process

– Master redundantly executes “slow ” map tasks
» Uses results of first copy to finish – why is this safe?
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Summary

• Important system properties
– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• MapReduce has proven to be a useful abstraction 
– Functional programming paradigm can be applied to 
large-scale applications

– Greatly simplifies large-scale computations at Google, 
Yahoo!, Facebook, and others

– Fun to use: focus on problem, let library deal with 
messy details


