CS162
Operating Systems and Systems Programming

Lecture 20
Distributed Systems, Networking

April 14, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

- Distributed Systems
- Networking [poll]
- Broadcast
- Point-to-Point Networking
- Routing
- Internet Protocol (IP)

Note: Some slides and/or pictures in the following are
adapted from slides @2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.
4/14/08
Joseph CS162 @UCB Spring 2008
Lec 20.2

Distributed Systems: Motivation/Issues

- Why do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through network resources (such as network file systems)
- The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
- Reality has been disappointing
- Worse availability: depend on every machine being up » Lamport: "a distributed system is one where I can't do work because some machine I've never heard of isn't working!"
- Worse reliability: can lose data if any machine crashes
- Worse security: anyone in world can break into system
- Coordination is more difficult
- Must coordinate multiple copies of shared state information
(using only a network)
- What would be easy in a centralized system becomes a lot more difficult
4/14/08
Joseph CS162 ©UCB Spring 2008
Lec 20.4

Distributed Systems: Goals/Requirements

- Transparency: the ability of the system to mask its complexity behind a simple interface
- Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide varoius things that go wrong in the system
- Transparency and collaboration require some way for different processors to communicate with one another

Networking Definitions

- Network: physical connection that allows two computers to communicate
- Packet: unit of transfer, sequence of bits carried over the network
- Network carries packets from one CPU to another
- Destination gets interrupt when packet arrives
- Protocol: agreement between two parties as to how information is to be transmitted

4/14/08
Joseph CS162 ©UCB Spring 2008
Lec 20.6

Page 2

Broadcast Network Arbitration

- Arbitration: Act of negotiating use of shared medium
- What if two senders try to broadcast at same time?
- Concurrent activity but can't use shared memory to coordinate!
- Aloha network (70's): packet radio within Hawaii
- Blind broadcast, with checksum at end of packet. If received correctly (not garbled), send back an acknowledgement. If not received correctly, discard.
" Need checksum anyway - in case airplane flies overhead
- Sender waits for a while, and if doesn't get an acknowledgement, re-transmits.
- If two senders try to send at same time, both get garbled, both simply re-send later.
- Problem: Stability: what if load increases?
» More collisions \Rightarrow less gets through \Rightarrow more resent \Rightarrow more load... \Rightarrow More collisions...
» Unfortunately: some sender may have started in clear, get scrambled without finishing
4/14/08
Joseph CS162 ©UCB Spring 2008
Lec 20.9

Administrivia

- Midterm \#2 is Wednesday April $16^{\text {th }}$
- 6-7:30pm in 10 Evans
- All material from projects 1-3, lectures \#9 (2/25) to \#19 (4/9)
- Let us know if you are taking the exam at the alternate time and have not heard from us (we're still looking for a room)
- No office hours on Tuesday
- Extra hours - Wednesday 11-12
- Midterm \#2 Review session today after class
- Project \#3 code deadline is Tuesday 4/22 at 11:59pm

- Final Exam

- May $21^{\text {st }}, 12: 30-3: 30 \mathrm{pm}$

4/14/08
Joseph CS162 ©UCB Spring 2008

Carrier Sense, Multiple Access/Collision Detection

- Ethernet (early 80's): first practical local area network
- It is the most common LAN for UNIX, PC, and Mac
- Use wire instead of radio, but still broadcast medium
- Key advance was in arbitration called CSMA/CD: Carrier sense, multiple access/collision detection
- Carrier Sense: don't send unless idle
» Don't mess up communications already in process
- Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry
- Backoff' Scheme: Choose wait time before trying again
- How long to wait after trying to send and failing?
- What if everyone waits the same length of time? Then,
they all collide again at some time!
- Must find way to break up shared behavior with nothing more than shared communication channel
Adaptive randomized waiting strategy:
- Adaptive and Random: First time, pick random wait time with some initial mean. If collide again, pick random value from bigger mean wait time. Etc.
- Randomness is important to decouple colliding senders - Scheme figures out how many people are trying to send

Lec 20.10

Taxonomy of Communication Networks

- Communication networks can be classified based on the way in which the nodes exchange
information:
Communication
 Network

4/14/08 Joseph CS162 ©UCB Spring 2008

Lec 20.12

Point-to-point networks

- Why have a shared bus at all? Why not simplify and only have point-to-point links + routers/switches?
- Didn't used to be cost-effective
- Now, easy to make high-speed switches and routers that can forward packets from a sender to a receiver
- Point-to-point network: a network in which every physical wire is connected to only two computers
- Switch: a bridge that transforms a shared-bus configuration into a point-to-point network
- Router: a device that acts as a junction between two networks to transfer data packets among them

Point-to-Point Network design

- Switches look like computers: inputs, memory, outputs - In fact probably contains a processor
- Function of switch is to forward packet to output that gets it closer to destination
- Can build big crossbar by combining smaller switches

4/14/08

Joseph CS162 @UCB Spring 2008

Point-to-Point Networks Discussion

- Advantages:
- Higher link performance

》 Can drive point-to-point link faster than broadcast link since less capacitance/less echoes (from impedance mismatches)

- Greater aggregate bandwidth than broadcast link
$»$ Can have multiple senders at once
- Can add capacity incrementally
" Add more links/switches to get more capacity
- Better fault tolerance (as in the Internet)
- Lower Latency
»No arbitration to send, although need buffer in the switch
Disadvantages:
- More expensive than having everyone share broadcast link
- However, technology costs now much cheaper

Examples

- ATM (asynchronous transfer mode)
» The first commercial point-to-point LAN
» Inspiration taken from telephone network
- Switched Ethernet
» Same packet format and signaling as broadcast Ethernet,
4/14/08 but only two machines on each ethernet

Joseph CS162 ©UCB Spring 2008
Lec 20.14

\section*{| Flow control options | | |
| :--- | :---: | :---: |
| $\left.\begin{array}{l\|l\|l\|}\hline A, B & & A \\ \hline D & & B, C, D \\ \hline D & & \\ \hline & & \end{array}\right)$ | | |}

- What if everyone sends to the same output? - Congestion-packets don't flow at full rate
- In general, what if buffers fill up?
- Need flow control policy
- Option 1: no flow control. Packets get dropped if they arrive and there's no space
- If someone sends a lot, they are given buffers and packets from other senders are dropped
- Internet actually works this way
- Option 2: Flow control between switches
- When buffer fills, stop inflow of packets
- Problem: what if path from source to destination is completely unused, but goes through some switch that has buffers filled up with unrelated traffic?
4/14/08
Joseph CS162 OUCB Spring 2008
Lec 20.16

Flow Control (con't)

- Option 3: Per-flow flow control
- Allocate a separate set of buffers to each end-toend stream and use separate "don't send me more" control on each end-to-end stream

- Problem: fairness
- Throughput of each stream is entirely dependent on topology, and relationship to bottleneck
- Automobile Analogy
- At traffic jam, one strategy is merge closest to the bottleneck
» Why people get off at one exit, drive 500 feet, merge back into flow
» Ends up slowing everybody else a huge amount
- Also why have control lights at on-ramps Try to keep from injecting more cars than capacity of
road (and thus avoid congestion) Joseph CS162 ©UCB Spring 2008

Lec 20.17

The Internet Protocol: "IP"

- The Internet is a large network of computers spread across the globe
- According to the Internet Systems Consortium, there were over 353 million computers as of July 2005
- In principle, every host can speak with every other one under the right circumstances
- IP Packet: a network packet on the internet
- IP Address: a 32-bit integer used as the destination of an IP packet
- Often written as four dot-separated integers, with each integer from 0-255 (thus representing $8 \times 4=3$ '2 bits)
- Example CS file server is: $169.229 .60 .83 \equiv 0 \times$ A9E53C53
- Internet Host: a computer connected to the Internet
- Host has one or more IP addresses used for routing » Some of these may be private and unavailable for routing
- Not every computer has a unique IP address
» Groups of machines may share a single IP address
» In this case, machines have private addresses behind a "Network Address Translation" (NAT) gateway

BREAK

Address Subnets

- Subnet: A network connecting a set of hosts with related destination addresses
- With IP, all the addresses in subnet are related by a prefix of bits
- Mask: The number of matching prefix bits
» Expressed as a single value (e.g., 24) or a set of ones in a 32 -bit value (e.g., 255.255.255.0)
- A subnet is identified by 32-bit value, with the bits which differ set to zero, followed by a slash and a mask
- Example: 128.32.131.0/24 designates a subnet in which all the addresses look like 128.32.131. XX
- Same subnet: 128.32.131.0/255.255.255.0
- Difference between subnet and complete network range
- Subnet is always a subset of address range
- Once, subnet meant single physical broadcast wire; now, less clear exactly what it means (virtualized by switches)
\qquad Joseph CS162 OUCB Spring 2008
Lec 20.20

Address Ranges in IP

- IP address space divided into prefix-delimited ranges:
- Class A: NN.0.0.0/8
» NN is 1-126 (126 of these networks)
» 16,777,214 IP addresses per network
» $10 . x x . y y . z z$ is private
» $127 . x x . y y . z z$ is loopback
- Class B: NN.MM.0.0/16
» NN is $128-191, \mathrm{MM}$ is $0-255$ (16,384 of these networks)
» 65,534 IP addresses per network
» 172.[16-31].xx.yy are private
- Class C: NN.MM.LL.0/24
» NN is 192-223, MM and LL 0-255
($2,097,151$ of these networks)
» 254 IP addresses per networks
» 192.168.xx.yy are private
- Address ranges are often owned by organizations
- Can be further divided into subnets

Simple Network Terminology

- Local-Area Network (LAN) - designed to cover small geographical area
- Multi-access bus, ring, or star network
- Speed \approx 10-10,000 Megabits/second (100Gb/s soon!)
- Broadcast is fast and cheap
- In small organization, a LAN could consist of a single subnet. In large organizations (like UC Berkeley), a LAN contains many subnets
- Wide-Area Network (WAN) - links geographically separated sites
- Point-to-point connections over long-haul lines (often leased from a phone company)
- Speed ≈ 1.544-10,000 Megabits/second
- Broadcast usually requires multiple messages

Hierarchical Networking: The Internet

- How can we build a network with millions of hosts?
- Hierarchy! Not every host connected to every other one
- Use a network of Routers to connect subnets together » Routing is offen by prefix: e.g. first router matches first 8 bits of address, next router matches more, etc.

Joseph CS162 @UCB Spring 2008
Lec 20.22

Routing

- Routing: the process of forwarding packets hop-by-hop through routers to reach their destination
- Need more than just a destination address! » Need a path
- Post Office Analogy:
» Destination address on each letter is not
sufficient to get it to the destination
» To get a letter from here to Florida, must route to local post office, sorted and sent on plane to somewhere in Florida, be routed to post office, sorted and sent with carrier who knows where street and house is..
- Internet routing mechanism: routing tables
- Each router does table lookup to decide which link to use to get packet closer to destination
- Don't need 4 billion entries in table: routing is by subnet
- Could packets be sent in a loop? Yes, if tables incorrect
- Routing table contains:
- Destination address range \rightarrow output link closer to destination
- Default entry (for subnets without explicit entries) 4/14/08 Joseph CS162 ©UCB Spring 2008

Lec 20.24

Setting up Routing Tables

- How do you set up routing tables?
- Internet has no centralized state!
» No single machine knows entire topology
» Topology constantly changing (faults, reconfiguration, etc)
- Need dynamic algorithm that acquires routing tables
» Ideally, have one entry per subnet or portion of address
» Could have "default" routes that send packets for unknown subnets to a different router that has more information
- Possible algorithm for acquiring routing table
- Routing table has "cost" for each entry
» Includes number of hops to destination, congestion, etc.
»Entries for unknown subnets have infinite cost
- Neighbors periodically exchange routing tables
» If neighbor knows cheaper route to a subnet, replace your entry with neighbors entry (+1 for hop to neighbor)
- In reality:
- Internet has networks of many different scales
- Different algorithms run at different scales Joseph CS162 @UCB Spring 2008

Conclusion

Network: physical connection that allows two computers to communicate

- Packet: sequence of bits carried over the network - Broadcast Network: Shared Communication Medium
- Transmitted packets sent to all receivers
- Arbitration: act of negotiating use of shared medium »Ethernet: Carrier Sense, Multiple Access, Collision Detect
- Point-to-point network: a network in which every physical wire is connected to only two computers
- Switch: a bridge that transforms a shared-bus (broadcast) configuration into a point-to-point network.
- Protocol: Agreement between two parties as to how information is to be transmitted
- Internet Protocol (IP): Layering used to abstract details - Used to route messages through routes across globe
- 32-bit addresses, 16-bit ports

4/14/08
Joseph CS162 ©UCB Spring 2008
Lec 20.26

