

 Why do we way 	int distributed systems?	
- Cheaper and	easier to build lots of simple co	mputers
- Easier to ad	d power incrementally ave complete control over some c a: Much easier for users to colla	omponente
- Collaboration	. Much easier for users to colla	borate through
network resc	ources (such as network file syst	ems)
・ The <i>promise</i> o	f distributed systems:	
- Higher availe	ability: one machine goes down, u bility: store data in multiple loca	ise another
- Better durat	oility: store data in multiple loca	tions
- More securit	y: each piece easier to make se	cure
· Reality has be	en disappointing bility: depend on every machine `a distributed system is one where :	baina un
» Lamport:	'a distributed system is one where	E can't do work
because so	ome machine I've never heard of isn pility: can lose data if any machi	't working!"
- Worse reliab	pility: can lose data if any machi	ne crashes
 Worse secur Coordination is 	ity: anyone in world can break ir	ito system
- Must coordination is	ate multiple copies of shared st	ata information
(using only a	network)	The information
- What would more difficu	be easy in a centralized system	becomes a lot
4/14/08	Joseph CS162 ©UCB Spring 2008	Lec 20,4

Address Subnets Subnet: A network connecting a set of hosts with related destination addresses With IP, all the addresses in subnet are related by a prefix of bits - Mask: The number of matching prefix bits » Expressed as a single value (e.g., 24) or a set of ones in a 32-bit value (e.g., 255.255.255.0) A subnet is identified by 32-bit value, with the bits which differ set to zero, followed by a slash and a mask - Example: 128.32.131.0/24 designates a subnet in which all the addresses look like 128, 32, 131, XX - Same subnet: 128.32.131.0/255.255.255.0 Difference between subnet and complete network range - Subnet is always a subset of address range - Once, subnet meant single physical broadcast wire; now, less clear exactly what it means (virtualized by switches) 4/14/08 Joseph CS162 ©UCB Spring 2008 Lec 20,20

Joseph CS162 ©UCB Spring 2008

4/14/08

Joseph CS162 ©UCB Spring 2008

Lec 20.24

Simple Network Terminology Routing Routing: the process of forwarding packets hop-by-hop · Local-Area Network (LAN) - designed to cover small through routers to reach their destination geographical area - Need more than just a destination address! - Multi-access bus, ring, or star network » Need a path - Speed ≈ 10 - 10,000 Megabits/second (100Gb/s soon!) - Post Office Analogy: » Destination address on each letter is not - Broadcast is fast and cheap sufficient to get it to the destination » To get a letter from here to Florida, must route to local post office, sorted and sent on plane to somewhere in Florida, be routed to post office, sorted and sent with - In small organization, a LAN could consist of a single subnet. In large organizations (like UC Berkeley), a LAN contains many subnets carrier who knows where street and house is... • Wide-Area Network (WAN) - links geographically Internet routing mechanism: routing tables - Each router does table lookup to decide which link to use separated sites to get packet closer to destination - Point-to-point connections over long-haul lines (often - Don't need 4 billion entries in table: routing is by subnet leased from a phone company) - Could packets be sent in a loop? Yes, if tables incorrect - Speed \approx 1.544 - 10,000 Megabits/second Routing table contains: - Destination address range \rightarrow output link closer to - Broadcast usually requires multiple messages destination - Default entry (for subnets without explicit entries)

Page 6

Lec 20.23

4/14/08

Setting up Routing Tables	Conclusion
 How do you set up routing tables? Internet has no centralized state! No single machine knows entire topology Topology constantly changing (faults, reconfiguration, etc) Need dynamic algorithm that acquires routing tables Ideally, have one entry per subnet or portion of address Could have "default" routes that send packets for unknown subnets to a different router that has more information Possible algorithm for acquiring routing table Routing table has "cost" for each entry Includes number of hops to destination, congestion, etc. Entries for unknown subnets have infinite cost Neighbors periodically exchange routing tables If neighbor knows cheaper route to a subnet, replace your entry with neighbors entry (+1 for hop to neighbor) In reality: Internet has networks of many different scales Different algorithms run at different scales Mathematical Control (2008 Spring 2008) Lec 20.25 	 Network: physical connection that allows two computers to communicate Packet: sequence of bits carried over the network Broadcast Network: Shared Communication Medium Transmitted packets sent to all receivers Arbitration: act of negotiating use of shared medium Ethernet: Carrier Sense, Multiple Access, Collision Detect Point-to-point network: a network in which every physical wire is connected to only two computers Switch: a bridge that transforms a shared-bus (broadcast) configuration into a point-to-point network. Protocol: Agreement between two parties as to how information is to be transmitted Internet Protocol (IP): Layering used to abstract details Used to route messages through routes across globe 32-bit addresses, 16-bit ports

г