CS162
Operating Systems and
Systems Programming
Lecture 22

Networking IT

April 23, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Sequence Numbers

* Ordered Messages
- Several network services are best constructed by
ordered messagini
» Ask remote machine to first do x, then do y, etc.
- Unfortunately, underlying network is packet based:
» Packets are routed one at a time through the network
» Can take different paths or be delayed individually
- IP can reorder packets! Py,P; might arrive as Py,P,
+ Solution: Queue out of order packets at destination
- Need to hold onto packets to undo misordering
- Total degree of reordering impacts queue size
+ Ordered messages on top of unordered ones:
- Assign sequence numbers to packets
»0,1,2,3,4....
» If packets arrive out of order, reorder before delivering to
user application
» For instance, hold onto #3 until #2 arrives, etc.
- Sequence numbers are specific to particular connection
» Reordering among connections normally doesn't matter
- If restart connection, need to make sure use different

range of sequence numbers than previously...
4/23/08 Joseph C5162 ©UCB Spring 2008

Lec 22.3

Page 1

Review: Point-to-point networks

J$auazlur

* Point-to-point network: a network in which every
physical wire is connected to only two computers

*+ Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.

* Hub: a multiport device that acts like a repeater
broadcasting from each input to every output

* Router: a device that acts as a junction between two
networks to transfer data packets among them.

Joseph C5162 ©UCB Spring 2008 Lec 22.2

4/23/08

Goals for Today

* Networking
- Protocols
- Reliable Messaging
» TCP windowing and congestion avoidance
- Two-phase commit

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
4/23/08 Joseph 5162 ©UCB Spring 2008 Lec 22.4

Reliable Message Delivery: the Problem
- All physical nefworks can garble and/or drop packets

- Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput -
even if some packets get lost
» If transmit at lowest voltage such that error correction just
starts correcting errors, get best power/bit
- Congestion: no place to put incoming packet
» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender sends faster than receiver
can process?
+ Reliable Message Delivery
- Reliable messages on top of unreliable packets
- Need some way to make sure that packets actually make
it to receiver
» Every packet received at least once
» Every packet received only once
- Can combine with ordering: every packet received by

process at destination exactly once and in order
4/23/0

Joseph C5162 ©UCB Spring 2008 Lec 22.5

How to deal with message duplication

+ Solufion: put sequence number in message to identity
re-transmitted packets
- Receiver checks for duplicate #'s; Discard if detected
* Requirements:
- Sender keeps copy of unack'ed messages
» Easy: only need to buffer messages
- Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?
+ Alternating-bit protocol:
- Send one message at a time; don't send A
next message until ack received
- Sender keeps last message; receiver
tracks sequence # of last message received
* Pros: simple, small overhead
+ Con: Poor performance Ak HL
- Wire can hold multiple messages; want to
fill up at (wire latency x throughput)
+ Con: doesn't work if network can delay & #
or duplicate messages arbitrarily
4/23/08 Joseph 5162 ®UCB Spring 2008

i

Ack #9

4

0

|

Lec 22.7

Page 2

Using Acknowledgements
AE——""IB A B

Packer g_ EI.(.er
} Timeout { """ >
Packey

* How to ensure transmission of packets?
- Detect garbling at receiver via checksum, discard if bad
- Receiver acknowledges (by sending “ack") when packet
received properly at destination
- Timeout at sender: if no ack, retransmit
+ Some questions:
- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?
» No
- What it ack gets dropped? Or if message gets delayed?

» Sender doesn't Eet ack, retransmits. Receiver gets message

twice, acks eac
Joseph €5162 ©UCB Spring 2008

4/23/08 Lec 22.6

Better messaging: Window-based acknowledgements

+ Window based protocol (TCP): Al 1B
- Send up to N packets without ack ks,
» Allows pipelining of packets =5 -{ o
» Window size (l\?) < queue at destination
- Each packet has sequence number PR
» Receiver acknowledges each packet #9
» Ack says “received all packets up ot
to sequence number X"/send more
* Acks serve dual purpose: o
- Reliability: Confirming packet received
- Flow Control: Receiver ready for packet
» Remaining space in queue at receiver
can be returned wit
* What if packet gets garbled/dropped?
- Sender will timeout waiting for ack packet
» Resend missing packets="Receiver gets packets out of order!
- Should receiver discard packets that arrive out of order?
» Simple, but poor performance
- Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex
* What if ack ge‘rs garbled/dropped?

- Timeout and resend "jusf the un-acknowledged packets
4/23/08 Joseph C5162 ©UCB Spring 2008 Lec 22.8

Ik

Transmission Control Protocol (TCP)

Stream in: Stream out:

WEZET)

Zyxwutd | {Router) {Router)

- Transmission Control Protocol (TCP)
- TCP (IP Protocol 6) layered on top of IP
- Religble byte stream between two processes on different

machines over Internet (read, write, flush)
+ TCP Details

- Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself
- Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)
» "Window" reflects storage at receiver - sender shouldn't
overrun receiver's buffer space
» Also, window should reflect speed/capacity of network -
sender shouldn't overload network
- Automatically retransmits lost packets
- Adjusts rate of transmission to avoid congestion
» A “good citizen”
4/23/08 Joseph C5162 ©UCB Spring 2008

Lec 22.9
Window-Based Acknowledgements (TCP)
100 140 190 230 260 300 340 380 400
n v n v 0w lno 0O | 0O jn 0
N 8 N 8 NS |8 g'ﬁ' NS | NS N8
— ® - ® - O - |lo -] o o .. ® - |0 —)

So| af | S0 |ud] s 88| 3% [»

[=X=] O o OO0 |©0| ©o| ©o6| ©o0 |o

Joseph CS162 ©UCB Spring 2008

Page 3

TCP Windows and Sequence Numbers

—>Sequence Numbers ———

Sent Sent Not yet Send
acked not acked sent ender
Received Received Not yet

Given to app| Buffered received Receiver

+ Sender has three regions:
- Sequence regions
» sent and ack'ed
» Sent and not ack'ed
» not yet sent
- Window (colored region) adjusted by sender
* Receiver has three regions:
- Sequence regions
» received and ack'ed (given to application)
» received and buffered

» not yet received (or discarded because out of order)
4/23/08

Joseph C5162 ©UCB Spring 2008 Lec 22.10

Administrivia

* Project #4 design deadline is Thu 5/1 at 11:59pm
- You need to create an account (ASAP!)
» Let us know if you have problems creating an account

- Code deadline is Wed 5/14

+ Final Exam - May 21s%, 12:30-3:30pm
- Email conflicts to cs162@cory by Wed 4/23 at 5pm

- Final Topics: Any suggestions?
- Please send them to me...

Thank you for the anonymous web comments!

4/23/08 Joseph C5162 ©UCB Spring 2008 Lec 22.12

mailto:cs162@cory.edy

Selective Acknowledgement Option (SACK)

— m =
A8 HA
1 ~g 5% |3
3 Sy EE Z |
gsl |<s8 25 3B
g‘:z Ss aQ sl
el5 &8 (=18 Sl
3 <
2] Q
3 2]
TCP Header TCP Header

* Vanilla TCP Acknowledgement
- Every message encodes Sequence number and Ack
- Can include data for forward stream and/or ack for
reverse stream
+ Selective Acknowledgement
- Acknowledgement information includes not just one
number, but rather ranges of received packets
- Must be specially negotiated at beginning of TCP setup

» Not widely in use (although in Windows since Windows 98)

4/23/08 Joseph C5162 ®UCB Spring 2008 Lec 22.13

Sequence-Number Initialization

*+ How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet
- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
+ Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire
- Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of
sequence
- Pseudo-random increment to previous sequence number

» Used by several protocol implementations
Joseph CS162 ©UCB Spring 2008

4/23/08 Lec 22.15

Page 4

Congestion Avoidance

+ Congestion
- How long should timeout be for re-sending messages?
» Too long—>wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion
» Closely related to window size at sender: too big means
cruh‘ing too much data into network
* How does the sender’s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
* TCP solution: “slow start” (start sending slowly)
- If no timeout, slowly increase window size (throughput)
by 1 for each ack received
- Timeout = congestion, so cut window size in half

- “Additive Increase Mu/igg/icaﬁve &ecrease"

4/23/08 Joseph CS162 @UCR Spring 2 Lec 22.14

"End-to-End Arguments in System Design”
(Saltzer, Reed, and Clark)

* Most influential paper about placing functionality
- "Sacred Text” of the Internet
» Endless disputes about what it means
» Everyone cites it as supporting their position
*+ Some applications have end-to-end performance
requirements:
- Reliability, security, ..

* Implementing these in the network is very hard:
- Every step along the way must be fail-proof

* Hosts:
- Can satisfy the requirement without the network

- Can't depend on the network

Joseph CS162 ®UCB Spring 2008 Lec 22.16

4/23/08

Example: Reliable File Transfer
Host B

Host A

= =

+ Solution 1: make each step reliable, and then
concatenate them
- Solution 1 not complete (e.g., misbehaving net element)
» What happens if any network element misbehaves?
» Receiver has to do the check anyway!
+ Solution 2: end-to-end check and retry
- Solution 2 is complete

» Full functionality can be entirely implemented at
application layer with no need for reliability from lower

4/23/08 layers Joseph €5162 ®UCB Spring 2008 Lec 22.17

Use of TCP: Sockets

+ Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine &:alled “"UNIX socket”) or remote
machine (called “network socket”)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up "server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming
connection request
» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread
- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

4/23/08 Joseph CS162 ©UCB Spring 2008 Lec 22.19

Page 5

E2E Summary

+ Implementing this functionality in the network:
- Doesn't reduce host implementation complexity
- Does increase network complexity

- Probably imposes delay and overhead on all
applications, even if they don't need functionality

+ However, implementing in network can enhance
performance in some cases

- Such as a very lossy link

* Layering is a good way to organize networks
- Unified Internet layer decouples apps from networks
- E2E argument encourages us to keep IP simple
- Commercial realities may undo all of this...

4/23/08 Joseph €5162 ©UCB Spring 2008 Lec 22.18

Socket Setup (Con't)

Client

Server

+ Things to remember:
- Connection requires 5 values:
[Src Addr, Src Port, Dst Addr, Dst Port, Protocol]

- Often, Src Port “randomly” assigned

» Done by OS during client socket setup
- Dst Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from 0—1023

4/23/08 Joseph C5162 ©UCB Spring 2008 Lec 22.20

BREAK

Distributed Applications

+ How do you actually program a distributed application?
- Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use testd&set

- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message
+ Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
— Send (message, mbox)
» Send message to remote mailbox identified by mbox
— Receive (buffer,mbox)
» Wait until mbox has message, copy into buffer, and return

» If threads sleeping on this mbox, wake up one of them
4/23/08 Joseph'C5162 ©UCB Spring 2008 Lec 22.23

Page 6

Socket Example (Java)

server:
//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013) ;
while (true) {
Socket client = sock.accept();
PrintWriter pout = new
PrintWriter (client.getOutputStream(), true) ;

pout.println(“Here is data sent to client!”);

cliént.close();

client:

// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”7,6013);
BufferedReader bin =

new BufferedReader (

new InputStreamReader (sock.getInputStream)) ;

String line;
while ((line = bin.readLine()) !'=null)

System.out.println(line) ;
sock.close() ;

4/23/08 Joseph €5162 ©UCB Spring 2008 Lec 22.22

Using Messages: Send/Receive behavior

* When should send (message ,mbox) return?

- When receiver gets message? (i.e. ack received)

- When message is safely buffered on destination?

- Right away, if message is buffered on source node?
+ Actually two questions here:

- When can the sender be sure that the receiver actually
received the message?

- When can sender reuse the memory containing message?
* Mailbox provides 1-way communication from T1-5T2

- T1>buffer—»T2

- Very similar to producer/consumer

» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

4/23/08 Joseph C5162 ©UCB Spring 2008 Lec 22.24

Messaging for Producer-Consumer Style

+ Using send/receive for producer-consumer style:

Producer:

int msgl[1000];

" prepare.
prepare message; Message
send (msgl,mbox) ;

}

Consumer:

int buffer[1000];

while (1) {

receive (buffer,mbox) ;
process message; Message
* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
- One of the roles of the window in TCP: window is size of
buffer on far end
- Restricts sender to forward only what will fit in buffer
4/23/08

Joseph C5162 ©UCB Spring 2008 Lec 22.25

Conclusion

* Layering: building complex services from simpler ones

* Ordered messages:
- Use sequence numbers and reorder at destination

* Reliable messages:
- Use Acknowledgements
- Want a window larger than 1 in order to increase
throughput

+ TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

4/23/08 Joseph CS162 ©UCB Spring 2008 Lec 22.27

Page 7

Messaging for Request/Response communication

* What about two-way communication?
- Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client

+ Example: File service
Client: (requesting the file) Rqu.les'l'
char response[1000]; File
send (“read rutabaga”, server mbox) ;
receive (response, client_mbox) ; Get
Response
Server: (responding with the file)
char command[1000], answer[1000];

receive (command, server_mbox) ; Receive
decode command; Request

read file into answer;

send (answer, client_mbox) ; Send
Joseph €5162 ©UCB Spring 2008 Response 2.26

4/23/08

