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Review: Point-to-point networks

• Point-to-point network: a network in which every 
physical wire is connected to only two computers

• Switch: a bridge that transforms a shared-bus 
(broadcast) configuration into a point-to-point network.

• Hub: a multiport device that acts like a repeater 
broadcasting from each input to every output

• Router: a device that acts as a junction between two 
networks to transfer data packets among them.

Router

I
nte

rne
t

Switch

Lec 22.34/23/08 Joseph CS162 ©UCB Spring 2008

Sequence Numbers
• Ordered Messages

– Several network services are best constructed by 
ordered messaging

» Ask remote machine to first do x, then do y, etc.
– Unfortunately, underlying network is packet based:

» Packets are routed one at a time through the network
» Can take different paths or be delayed individually

– IP can reorder packets!  P0,P1 might arrive as P1,P0
• Solution: Queue out of order packets at destination

– Need to hold onto packets to undo misordering
– Total degree of reordering impacts queue size

• Ordered messages on top of unordered ones:
– Assign sequence numbers to packets

» 0,1,2,3,4…..
» If packets arrive out of order, reorder before delivering to 

user application
» For instance, hold onto #3 until #2 arrives, etc.

– Sequence numbers are specific to particular connection
» Reordering among connections normally doesn’t matter

– If restart connection, need to make sure use different 
range of sequence numbers than previously…
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Goals for Today

• Networking

– Protocols

– Reliable Messaging
» TCP windowing and congestion avoidance

– Two-phase commit

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput –

even if some packets get lost
» If transmit at lowest voltage such that error correction just 

starts correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender sends faster than receiver 

can process?

• Reliable Message Delivery
– Reliable messages on top of unreliable packets 
– Need some way to make sure that packets actually make 
it to receiver

» Every packet received at least once
» Every packet received only once

– Can combine with ordering: every packet received by 
process at destination exactly once and in order
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Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending ―ack‖) when packet 
received properly at destination

– Timeout at sender:  if no ack, retransmit
• Some questions:

– If the sender doesn’t get an ack, does that mean the 
receiver didn’t get the original message?

» No
– What it ack gets dropped?  Or if message gets delayed?

» Sender doesn’t get ack, retransmits.  Receiver gets message 
twice, acks each.

BA BA

Timeout
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BA

How to deal with message duplication
• Solution: put sequence number in message to identify 

re-transmitted packets
– Receiver checks for duplicate #’s; Discard if detected

• Requirements:
– Sender keeps copy of unack’ed messages

» Easy: only need to buffer messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Alternating-bit protocol:

– Send one message at a time; don’t send
next message until ack received

– Sender keeps last message; receiver 
tracks sequence # of last message received

• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency  throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily
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BA

Better messaging: Window-based acknowledgements
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• Window based protocol (TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» Ack says ―received all packets up

to sequence number X‖/send more
• Acks serve dual purpose: 

– Reliability: Confirming packet received
– Flow Control: Receiver ready for packet

» Remaining space in queue at receiver 
can be returned with ACK

• What if packet gets garbled/dropped?  
– Sender will timeout waiting for ack packet

» Resend missing packets Receiver gets packets out of order!
– Should receiver discard packets that arrive out of order?  

» Simple, but poor performance
– Alternative: Keep copy until sender fills in missing pieces? 

» Reduces # of retransmits, but more complex
• What if ack gets garbled/dropped?  

– Timeout and resend just the un-acknowledged packets
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Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different 
machines over Internet (read, write, flush)

• TCP Details
– Fragments byte stream into packets, hands packets to IP

» IP may also fragment by itself
– Uses window-based acknowledgement protocol (to minimize 
state at sender and receiver)

» ―Window‖ reflects storage at receiver – sender shouldn’t 
overrun receiver’s buffer space

» Also, window should reflect speed/capacity of network –
sender shouldn’t overload network

– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A ―good citizen‖ 

Router Router

Stream in: Stream out:

..zyxwvuts gfedcba
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TCP Windows and Sequence Numbers

• Sender has three regions: 
– Sequence regions

» sent and ack’ed
» Sent and not ack’ed
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions: 

– Sequence regions
» received and ack’ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver
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Administrivia

• Project #4 design deadline is Thu 5/1 at 11:59pm
– You need to create an account (ASAP!)

» Let us know if you have problems creating an account
– Code deadline is Wed 5/14

• Final Exam – May 21st, 12:30-3:30pm
– Email conflicts to cs162@cory by Wed 4/23 at 5pm

• Final Topics: Any suggestions?
– Please send them to me…

• Thank you for the anonymous web comments!

mailto:cs162@cory.edy
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Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for 
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one 
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

I
P H

e
a
d
e
r

(2
0
 b

y
te

s)

S
e
que

nce
 N

um
b
e
r

A
ck

 N
um

b
e
r

TCP Header

I
P 

H
e
a
d
e
r

(2
0
 b

y
te

s)

S
e
qu

e
nc

e
 N

um
b
e
r

A
ck

 N
um

b
e
r

TCP Header

Lec 22.144/23/08 Joseph CS162 ©UCB Spring 2008

Congestion Avoidance

• Congestion
– How long should timeout be for re-sending messages?

» Too longwastes time if message lost
» Too shortretransmit even though ack will arrive shortly

– Stability problem: more congestion  ack is delayed 
unnecessary timeout  more traffic  more congestion

» Closely related to window size at sender: too big means 
putting too much data into network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate 
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until 

acknowledgements start being delayed/lost
• TCP solution: ―slow start‖ (start sending slowly)

– If no timeout, slowly increase window size (throughput) 
by 1 for each ack received 

– Timeout  congestion, so cut window size in half
– ―Additive Increase, Multiplicative Decrease‖
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Sequence-Number Initialization

• How do you choose an initial sequence number?
– When machine boots, ok to start with sequence #0?

» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate 

ack from original transmission might hide lost packet
– Also, if it is possible to predict sequence numbers, might 
be possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets 

in flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence 
numbers are currently being used

» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of 

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations
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―End-to-End Arguments in System Design‖ 
(Saltzer, Reed, and Clark)

• Most influential paper about placing functionality

– ―Sacred Text‖ of the Internet
» Endless disputes about what it means

» Everyone cites it as supporting their position

• Some applications have end-to-end performance 
requirements: 
– Reliability, security, …

• Implementing these in the network is very hard:

– Every step along the way must be fail-proof

• Hosts:
– Can satisfy the requirement without the network

– Can’t depend on the network
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Example: Reliable File Transfer

• Solution 1: make each step reliable, and then 
concatenate them

– Solution 1 not complete (e.g., misbehaving net element)
» What happens if any network element misbehaves?

» Receiver has to do the check anyway!

• Solution 2: end-to-end check and retry
– Solution 2 is complete

» Full functionality can be entirely implemented at 
application layer with no need for reliability from lower 
layers

OS

Appl.

OS

Appl.

Host A Host B

OK
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E2E Summary

• Implementing this functionality in the network:

– Doesn’t reduce host implementation complexity

– Does increase network complexity

– Probably imposes delay and overhead on all 
applications, even if they don’t need functionality

• However, implementing in network can enhance 
performance in some cases

– Such as a very lossy link

• Layering is a good way to organize networks
– Unified Internet layer decouples apps from networks

– E2E argument encourages us to keep IP simple

– Commercial realities may undo all of this...
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Use of TCP: Sockets

• Socket: an abstraction of a network I/O queue
– Embodies one side of a communication channel

» Same interface regardless of location of other end
» Could be local machine (called ―UNIX socket‖) or remote 

machine (called ―network socket‖)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up ―server-socket‖
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming 

connection request
» Each successful accept() returns a new socket for a new  

connection; can pass this off to handler thread
– On client: 

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server
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Server
Socket

socket socketconnection

new
socket

ServerClient

Socket Setup (Con’t)

• Things to remember:
– Connection requires 5 values:
[ Src Addr, Src Port, Dst Addr, Dst Port, Protocol ]

– Often, Src Port ―randomly‖ assigned
» Done by OS during client socket setup

– Dst Port often ―well known‖
» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from 0—1023 
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BREAK
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Socket Example (Java)
server:

//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {

Socket client = sock.accept();
PrintWriter pout = new

PrintWriter(client.getOutputStream(),true);

pout.println(“Here is data sent to client!”);
…

client.close();
}

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”,6013);
BufferedReader bin = 

new BufferedReader(
new InputStreamReader(sock.getInputStream));

String line;
while ((line = bin.readLine())!=null)

System.out.println(line);
sock.close();
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Distributed Applications

• How do you actually program a distributed application?
– Need to synchronize multiple threads, running on 
different machines 

» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and 

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network
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Using Messages: Send/Receive behavior

• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)

– When message is safely buffered on destination?

– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that the receiver actually 
received the message?

– When can sender reuse the memory containing message?

• Mailbox provides 1-way communication from T1T2
– T1bufferT2

– Very similar to producer/consumer 
» Send = V, Receive = P

» However, can’t tell if sender/receiver is local or not!
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Messaging for Producer-Consumer Style

• Using send/receive for producer-consumer style:
Producer:

int msg1[1000];
while(1) {

prepare message; 
send(msg1,mbox);

}

Consumer:
int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}

• No need for producer/consumer to keep track of space 
in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of 
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 22.264/23/08 Joseph CS162 ©UCB Spring 2008

Messaging for Request/Response communication

• What about two-way communication?
– Request/Response

» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client  requester, Server  responder
» Server provides ―service‖ (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];

send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response
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Conclusion

• Layering: building complex services from simpler ones

• Ordered messages:
– Use sequence numbers and reorder at destination

• Reliable messages:
– Use Acknowledgements
– Want a window larger than 1 in order to increase 
throughput

• TCP: Reliable byte stream between two processes on 
different machines over Internet (read, write, flush)


