
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 22

Networking II

April 23, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 22.24/23/08 Joseph CS162 ©UCB Spring 2008

Review: Point-to-point networks

• Point-to-point network: a network in which every
physical wire is connected to only two computers

• Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.

• Hub: a multiport device that acts like a repeater
broadcasting from each input to every output

• Router: a device that acts as a junction between two
networks to transfer data packets among them.

Router

I
nte

rne
t

Switch

Lec 22.34/23/08 Joseph CS162 ©UCB Spring 2008

Sequence Numbers
• Ordered Messages

– Several network services are best constructed by
ordered messaging

» Ask remote machine to first do x, then do y, etc.
– Unfortunately, underlying network is packet based:

» Packets are routed one at a time through the network
» Can take different paths or be delayed individually

– IP can reorder packets! P0,P1 might arrive as P1,P0
• Solution: Queue out of order packets at destination

– Need to hold onto packets to undo misordering
– Total degree of reordering impacts queue size

• Ordered messages on top of unordered ones:
– Assign sequence numbers to packets

» 0,1,2,3,4…..
» If packets arrive out of order, reorder before delivering to

user application
» For instance, hold onto #3 until #2 arrives, etc.

– Sequence numbers are specific to particular connection
» Reordering among connections normally doesn’t matter

– If restart connection, need to make sure use different
range of sequence numbers than previously…

Lec 22.44/23/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Networking

– Protocols

– Reliable Messaging
» TCP windowing and congestion avoidance

– Two-phase commit

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Page 2

Lec 22.54/23/08 Joseph CS162 ©UCB Spring 2008

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput –

even if some packets get lost
» If transmit at lowest voltage such that error correction just

starts correcting errors, get best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender sends faster than receiver

can process?

• Reliable Message Delivery
– Reliable messages on top of unreliable packets
– Need some way to make sure that packets actually make
it to receiver

» Every packet received at least once
» Every packet received only once

– Can combine with ordering: every packet received by
process at destination exactly once and in order

Lec 22.64/23/08 Joseph CS162 ©UCB Spring 2008

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending ―ack‖) when packet
received properly at destination

– Timeout at sender: if no ack, retransmit
• Some questions:

– If the sender doesn’t get an ack, does that mean the
receiver didn’t get the original message?

» No
– What it ack gets dropped? Or if message gets delayed?

» Sender doesn’t get ack, retransmits. Receiver gets message
twice, acks each.

BA BA

Timeout

Lec 22.74/23/08 Joseph CS162 ©UCB Spring 2008

BA

How to deal with message duplication
• Solution: put sequence number in message to identify

re-transmitted packets
– Receiver checks for duplicate #’s; Discard if detected

• Requirements:
– Sender keeps copy of unack’ed messages

» Easy: only need to buffer messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Alternating-bit protocol:

– Send one message at a time; don’t send
next message until ack received

– Sender keeps last message; receiver
tracks sequence # of last message received

• Pros: simple, small overhead
• Con: Poor performance

– Wire can hold multiple messages; want to
fill up at (wire latency throughput)

• Con: doesn’t work if network can delay
or duplicate messages arbitrarily

Lec 22.84/23/08 Joseph CS162 ©UCB Spring 2008

BA

Better messaging: Window-based acknowledgements

N=5

Q
ue

ue

• Window based protocol (TCP):
– Send up to N packets without ack

» Allows pipelining of packets
» Window size (N) < queue at destination

– Each packet has sequence number
» Receiver acknowledges each packet
» Ack says ―received all packets up

to sequence number X‖/send more
• Acks serve dual purpose:

– Reliability: Confirming packet received
– Flow Control: Receiver ready for packet

» Remaining space in queue at receiver
can be returned with ACK

• What if packet gets garbled/dropped?
– Sender will timeout waiting for ack packet

» Resend missing packets Receiver gets packets out of order!
– Should receiver discard packets that arrive out of order?

» Simple, but poor performance
– Alternative: Keep copy until sender fills in missing pieces?

» Reduces # of retransmits, but more complex
• What if ack gets garbled/dropped?

– Timeout and resend just the un-acknowledged packets

Page 3

Lec 22.94/23/08 Joseph CS162 ©UCB Spring 2008

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

• TCP Details
– Fragments byte stream into packets, hands packets to IP

» IP may also fragment by itself
– Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)

» ―Window‖ reflects storage at receiver – sender shouldn’t
overrun receiver’s buffer space

» Also, window should reflect speed/capacity of network –
sender shouldn’t overload network

– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A ―good citizen‖

Router Router

Stream in: Stream out:

..zyxwvuts gfedcba

Lec 22.104/23/08 Joseph CS162 ©UCB Spring 2008

TCP Windows and Sequence Numbers

• Sender has three regions:
– Sequence regions

» sent and ack’ed
» Sent and not ack’ed
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ack’ed (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 22.114/23/08 Joseph CS162 ©UCB Spring 2008

S
e
q:1

9
0

S
iz
e
:4

0

Window-Based Acknowledgements (TCP)

Seq:230 A:190/140

Seq:260 A:190/100

Seq:300 A:190/60

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100

S
e
q:1

0
0

S
iz
e
:4

0

140

S
e
q:1

4
0

S
iz
e
:5

0

190

S
e
q:2

3
0

S
iz
e
:3

0

230 260

S
e
q:2

6
0

S
iz
e
:4

0

300

S
e
q:3

0
0

S
iz
e
:4

0

340

S
e
q:3

4
0

S
iz
e
:4

0

380

S
e
q:3

8
0

S
iz
e
:2

0

400

Retransmit!

Lec 22.124/23/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Project #4 design deadline is Thu 5/1 at 11:59pm
– You need to create an account (ASAP!)

» Let us know if you have problems creating an account
– Code deadline is Wed 5/14

• Final Exam – May 21st, 12:30-3:30pm
– Email conflicts to cs162@cory by Wed 4/23 at 5pm

• Final Topics: Any suggestions?
– Please send them to me…

• Thank you for the anonymous web comments!

mailto:cs162@cory.edy

Page 4

Lec 22.134/23/08 Joseph CS162 ©UCB Spring 2008

Selective Acknowledgement Option (SACK)

• Vanilla TCP Acknowledgement
– Every message encodes Sequence number and Ack
– Can include data for forward stream and/or ack for
reverse stream

• Selective Acknowledgement
– Acknowledgement information includes not just one
number, but rather ranges of received packets

– Must be specially negotiated at beginning of TCP setup
» Not widely in use (although in Windows since Windows 98)

I
P H

e
a
d
e
r

(2
0
 b

y
te

s)

S
e
que

nce
 N

um
b
e
r

A
ck

 N
um

b
e
r

TCP Header

I
P

H
e
a
d
e
r

(2
0
 b

y
te

s)

S
e
qu

e
nc

e
 N

um
b
e
r

A
ck

 N
um

b
e
r

TCP Header

Lec 22.144/23/08 Joseph CS162 ©UCB Spring 2008

Congestion Avoidance

• Congestion
– How long should timeout be for re-sending messages?

» Too longwastes time if message lost
» Too shortretransmit even though ack will arrive shortly

– Stability problem: more congestion ack is delayed
unnecessary timeout more traffic more congestion

» Closely related to window size at sender: too big means
putting too much data into network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate
that the slowest link can accommodate

– Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until

acknowledgements start being delayed/lost
• TCP solution: ―slow start‖ (start sending slowly)

– If no timeout, slowly increase window size (throughput)
by 1 for each ack received

– Timeout congestion, so cut window size in half
– ―Additive Increase, Multiplicative Decrease‖

Lec 22.154/23/08 Joseph CS162 ©UCB Spring 2008

Sequence-Number Initialization

• How do you choose an initial sequence number?
– When machine boots, ok to start with sequence #0?

» No: could send two messages with same sequence #!
» Receiver might end up discarding valid packets, or duplicate

ack from original transmission might hide lost packet
– Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection

• Some ways of choosing an initial sequence number:
– Time to live: each packet has a deadline.

» If not delivered in X seconds, then is dropped
» Thus, can re-use sequence numbers if wait for all packets

in flight to be delivered or to expire
– Epoch #: uniquely identifies which set of sequence
numbers are currently being used

» Epoch # stored on disk, Put in every message
» Epoch # incremented on crash and/or when run out of

sequence #
– Pseudo-random increment to previous sequence number

» Used by several protocol implementations
Lec 22.164/23/08 Joseph CS162 ©UCB Spring 2008

―End-to-End Arguments in System Design‖
(Saltzer, Reed, and Clark)

• Most influential paper about placing functionality

– ―Sacred Text‖ of the Internet
» Endless disputes about what it means

» Everyone cites it as supporting their position

• Some applications have end-to-end performance
requirements:
– Reliability, security, …

• Implementing these in the network is very hard:

– Every step along the way must be fail-proof

• Hosts:
– Can satisfy the requirement without the network

– Can’t depend on the network

Page 5

Lec 22.174/23/08 Joseph CS162 ©UCB Spring 2008

Example: Reliable File Transfer

• Solution 1: make each step reliable, and then
concatenate them

– Solution 1 not complete (e.g., misbehaving net element)
» What happens if any network element misbehaves?

» Receiver has to do the check anyway!

• Solution 2: end-to-end check and retry
– Solution 2 is complete

» Full functionality can be entirely implemented at
application layer with no need for reliability from lower
layers

OS

Appl.

OS

Appl.

Host A Host B

OK

Lec 22.184/23/08 Joseph CS162 ©UCB Spring 2008

E2E Summary

• Implementing this functionality in the network:

– Doesn’t reduce host implementation complexity

– Does increase network complexity

– Probably imposes delay and overhead on all
applications, even if they don’t need functionality

• However, implementing in network can enhance
performance in some cases

– Such as a very lossy link

• Layering is a good way to organize networks
– Unified Internet layer decouples apps from networks

– E2E argument encourages us to keep IP simple

– Commercial realities may undo all of this...

Lec 22.194/23/08 Joseph CS162 ©UCB Spring 2008

Use of TCP: Sockets

• Socket: an abstraction of a network I/O queue
– Embodies one side of a communication channel

» Same interface regardless of location of other end
» Could be local machine (called ―UNIX socket‖) or remote

machine (called ―network socket‖)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up ―server-socket‖
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

Lec 22.204/23/08 Joseph CS162 ©UCB Spring 2008

Server
Socket

socket socketconnection

new
socket

ServerClient

Socket Setup (Con’t)

• Things to remember:
– Connection requires 5 values:
[Src Addr, Src Port, Dst Addr, Dst Port, Protocol]

– Often, Src Port ―randomly‖ assigned
» Done by OS during client socket setup

– Dst Port often ―well known‖
» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from 0—1023

Page 6

BREAK

Lec 22.224/23/08 Joseph CS162 ©UCB Spring 2008

Socket Example (Java)
server:

//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {

Socket client = sock.accept();
PrintWriter pout = new

PrintWriter(client.getOutputStream(),true);

pout.println(“Here is data sent to client!”);
…

client.close();
}

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”,6013);
BufferedReader bin =

new BufferedReader(
new InputStreamReader(sock.getInputStream));

String line;
while ((line = bin.readLine())!=null)

System.out.println(line);
sock.close();

Lec 22.234/23/08 Joseph CS162 ©UCB Spring 2008

Distributed Applications

• How do you actually program a distributed application?
– Need to synchronize multiple threads, running on
different machines

» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

S
e
nd

R
e
ce

ive

Lec 22.244/23/08 Joseph CS162 ©UCB Spring 2008

Using Messages: Send/Receive behavior

• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)

– When message is safely buffered on destination?

– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that the receiver actually
received the message?

– When can sender reuse the memory containing message?

• Mailbox provides 1-way communication from T1T2
– T1bufferT2

– Very similar to producer/consumer
» Send = V, Receive = P

» However, can’t tell if sender/receiver is local or not!

Page 7

Lec 22.254/23/08 Joseph CS162 ©UCB Spring 2008

Messaging for Producer-Consumer Style

• Using send/receive for producer-consumer style:
Producer:

int msg1[1000];
while(1) {

prepare message;
send(msg1,mbox);

}

Consumer:
int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}

• No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 22.264/23/08 Joseph CS162 ©UCB Spring 2008

Messaging for Request/Response communication

• What about two-way communication?
– Request/Response

» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client requester, Server responder
» Server provides ―service‖ (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];

send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

Lec 22.274/23/08 Joseph CS162 ©UCB Spring 2008

Conclusion

• Layering: building complex services from simpler ones

• Ordered messages:
– Use sequence numbers and reorder at destination

• Reliable messages:
– Use Acknowledgements
– Want a window larger than 1 in order to increase
throughput

• TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)

