CS162
Operating Systems and
Systems Programming
Lecture 23

Network Communication Abstractions /
Remote Procedure Call

April 28, 2008
Prof. Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Review: Using Acknowledgements
AL~~~ "]B A B

Packer c_'_ g!.(.gf
} Timeout { """ >
Packey

- How to ensure transmission of packets?
- Detect garbling at receiver via checksum, discard if bad
- Receiver acknowledges (by sending “ack”) when packet
received properly at destination
- Timeout at sender: if no ack, retransmit
* Some questions:
- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?
» No
- What it ack gets dropped? Or if message gets delayed?

» Sender doesn't ge‘r ack, retransmits. Receiver gets message
twice, acks each.
4/28/08 Joseph C5162 ©UCB Spring 2008

Lec 23.3

Page 1

Review: Reliable Networking

* Layering: building complex services from simpler ones
+ Datagram: an independent, self-contained network
message whose arrival, arrival time, and content are
not guaranteed
* Performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second
- Latency: time until first bit of packet arrives at receiver
- Arbitrary Sized messages:
- Fragment into multiple packets; reassemble at destination
+ Ordered messages:
- Use sequence numbers and reorder at destination
+ Reliable messages:
- Use Acknowledgements

- Want a window larger than 1 in order to increase
throughput

4/28/08 Joseph C5162 ©UCB Spring 2008 Lec 23.2

Goals for Today

- Distributed Decision Making
- Two-phase commit/Byzantine Commit

- Remote Procedure Call

+ Examples of Distributed File Systems

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
4/28/08 Joseph 5162 ©UCB Spring 2008 Lec 23.4

General's Paradox
* Genéral’'s paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
- Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?

w,_ _n

- Remarkably, "no”, even if all messages get through
11 am ok>?

t what if you
YeD“:‘n'-»fb;et this ack?

w23/}0 way To be sure last, megsgge gets, throughl

Lec 23.5

Two phase commit example

. Simﬁle Example: A=WellsFargo Bank, B=Bank of America
- Phase 1: Prepare Phase
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—>A: fransaction aborted; A writes “Abort” to log
» Enough funds:
rite new account balance & promise to commit to log
B—>A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred: wait for ack
» Write “Got Commit” to log
* What if B crashes at begmmnﬁ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at beginning of phase 2?
- Wakes up, sees that there is a transaction in progress;
sends “Abort” to B
* What if B crashes at beginning of phase 2?
- B comes back up, looks at log; when A sends it “Commit”

message, it will say, "oh, ok, commit”
4/28/08 Joseph €5162° ©UCE Spring 2008

Lec 23.7

Page 2

Two-Phase Commit
- Since we canT solve The General's Paradox (i.e.

simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
romise to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its
log and tells everyone to abort: each records “Abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log
» Then asks all nodes to commit: they respond with ack
» After receive acks, coordinator writes “Got Commit” to log
- Log can be used to complete this process such that all
machines either commit or don't commit

4/28/08 Joseph €5162 ©UCB Spring 2008 Lec 23.6

Distributed Decision Making Discussion

- Why is distributed decision maﬁmg desirabie?
- Fault Tolerance!
- A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)
- After decision made, result recorded in mulﬂgle places
* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,
sends a "yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has
voted “yes” on the update. If sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update
+ Alternative: There are alternatives such as "Three
Phase Commit” which don't have this blocking problem
* What happens if one or more of the nodes is malicious?

- Malicious: attempting to compromise the decision making
4/28/08 Joseph C5162 ©UCB Spring 2008 Lec 23.8

Byzantine General's Problem

4 Lieutenant

Ao
| ki
| AR

Retreat!
y

N

Lieutenant

/
/

-4 A
(e |
General : m’ \
Malicious! 1,‘ Lieutenant

* Byazantine General's Problem (n players):
- One General
- n-1 Lieutenants
- Some number of these (f) can be insane or malicious
- The commanding general must send an order to his n-1
lieutenants such that:
- IC1: All loyal lieutenants obey the same order
- IC2: If the commanding general is loyal, then all loyal

lieutenants obey the order he sends

4/28/08 YToseph CS162 ©UCB Spring 2008 Lec 23.9

Administrivia

* Project #4 design deadline is Thu 5/1 at 11:59pm
- Code deadline is Wed 5/14

+ Final Exam
- May 215, 12:30-3:30pm

* Final Topics: Any suggestions?
- Please send them to me...

4/28/08 Joseph CS162 ©UCB Spring 2008 Lec 23.11

Page 3

Byzantine General's Problem (con't)

+ Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

General

- With f faults, need n > 3f to solve problem
* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n
- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)
+ Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines fo make a coordinated decision
even if some subset of them (< n/3) are malicious

istributed
istribute
Request— OO Jbecision
4/28/08 9 @ | 2008 Lec 23.10

Remote Procedure Call

+ Raw messaging is a bit foo fow-level for programming
- Must wrap up information into message at source
- Must decide what to do with message at destination
- May need to sit and wait for multiple messages to arrive
+ Better option: Remote Procedure Call (RPC)
- Calls a procedure on a remote machine
- Client calls:
remoteFileSystem—>Read (“rutabaga”) ;
- Translated automatically into call on server:
fileSys—Read(“rutabaga”) ;
+ Implementation:
- Request-response message passing (under covers!)
- "Stub” provides glue on client/server
» Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

* Marshalling involves (depending on system)
- Converting values to a canonical form, serializing

objects, copyinjq arguments passed by reference, etc.
oseph™CS162 ©UCB Spring 2008 Lec 23.12

4/28/08

RPC Information Flow

bundle
’ args q
Client ca Client sen Packet
'\
(caller) —eTorn Stub eceive {andlen
u nDI.II'\CIII e mbo
. ret vals x
Machine A = 92,
Machine B % S
bundle zl |3
ret vals ox1
e
Server|—" turn Server send Packet
(callee) Stub - andle
call receive
unbundle
args
Lec 23.13

4/28/08 Joseph C5162 ©UCB Spring 2008

RPC Details (continued)

- How does clienT Know which mbox fo send f0?

- Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into_a network endpoint
» This is another word for “"naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
+ Dynamic Binding
- Most RPC systems use dynamic binding via name service
» Name service provides dynmaic translation of service—»mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
* What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
* What if multiple clients?
- Pass pointer to client-specific return mbox in request
4/28/08 Joseph CS162 ©UCB Spring 2008 Lec 23.15

Page 4

RPC Details

- Equivalence with regular procedure call
- Parameters < Request Message
- Result < Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
- Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them of\E
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded

(avoids unnecessary conversions).
Joseph €5162 ©UCB Spring 2008

Lec 23.14

4/28/08

Problems with RPC

+ Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working

- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

- Answer? Distributed transactions/Byzantine Commit

+ Performance

- Cost of Procedure call « same-machine RPC « network RPC

- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

Lec 23.16

4/28/08 Joseph C5162 ©UCB Spring 2008

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc...
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)
+ RPC's can be used to communicate between address
spaces on different machines or the same machine
- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
+ Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

4/28/08 Joseph C5162 ©UCB Spring 2008 Lec 23.17

Microkernel operating systems

- Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App || App| | App App ls:;!: windows
file system windowing RPC address
VM Networking spaces
Threads threads
Microkernel Structure

Monolithic Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

4/28/08

Joseph €S162 ®UCB Spring 2008 Lec 23.19

Page 5

Microkernel operating systems

+ Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

A A A File .
PP| [APP| | APP App sys windows
file system Windowing RPC address
VM Networking h s:aces
Threads threads
Monolithic Structure Microkernel Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

4/28/08

Joseph €5162 ©UCB Spring 2008 Lec 23.18

BREAK

Distributed File Systems

‘ __Read File i

>

S AP E—
Data

Client

- Distributed File System:
- Transparent access to files stored on a remote disk
+ Naming choices (always an issue):

- Hostnamelocalname: Name files explicitly mount
» No location or migration transparency spot:/jane
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo—/sue/foo on server
- A single, _z{/oba/ name space: every file
r

in the world has unique name
» Location Transparency: servers mount T
can change and files can move RS ";"7“
without involvinﬂsgg‘er SRolEpRo

4/28/08 5162 ©UCB Spring 2008

Conclusion

* Two-phase commit: distributed decision making
- First, make sure everyone guarantees that they will
commit if asked (prepare)
- Next, ask everyone to commit . .
* Byzantine General's Problem: distributed decision making
with malicious failures
- One general, n-1 lieutenants: some number of them may
be malicious (often “f” of them)
- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general
- Only solvable if n > 3f+1

+ Remote Procedure Call (RPC): Call procedure on remote
machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments without
user programming (in stub)
* VFS: Virtual File System layer
- Provides mechanism which gives same system call interface
for different types of file systems

4/28/08 Joseph CS162 ©UCB Spring 2008 Lec 23.23

Page 6

Virtual File System (VFS)

e system miarlace

[

VFS intortace

{
J l |

local e system local file system remote file system
ypo 1 type 2 type 1

3 8

 VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
+ VFS allows the same system call interface (the APT) to
be used for different types of file systems

- The APL is to the VFS interface, rather than any specific
type of file system

4/28/08 Joseph C5162 ©UCB Spring 2008

Lec 23.22

