
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 24

Distributed File Systems

April 30, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 24.24/28/08 Joseph CS162 ©UCB Spring 2008

Review: Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems

• VFS allows the same system call interface (the API) to
be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 24.34/28/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Examples of Distributed File Systems

• Cache Coherence Protocols

• Worms and Viruses

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 24.44/28/08 Joseph CS162 ©UCB Spring 2008

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use RPC to translate file system calls
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view
of file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)

Return (Data)

Client

cache

Page 2

Lec 24.54/28/08 Joseph CS162 ©UCB Spring 2008

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)

Return (Data)

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Lec 24.64/28/08 Joseph CS162 ©UCB Spring 2008

Failures

• What if server crashes? Can client wait until server
comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does
UNIX “rm foo”, but before acknowledgment?

» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NFS takes a more ad hoc
approach)

• Stateless protocol: A protocol in which all information
required to process a request is passed with request
– Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 24.74/28/08 Joseph CS162 ©UCB Spring 2008

World Wide Web

• Key idea: graphical front-end to RPC protocol

• What happens when a web server fails?
– System breaks!

– Solution: Transport or network-layer redirection
» Invisible to applications

» Can also help with scalability (load balancers)

» Must handle “sessions” (e.g., banking/e-commerce)

• Initial version: no caching

– Didn’t scale well – easy to overload servers

Lec 24.84/28/08 Joseph CS162 ©UCB Spring 2008

WWW Caching

• Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:
– Time-to-Live (TTL) fields – HTTP “Expires” header
from server

– Client polling – HTTP “If-Modified-Since” request
headers from clients

– Server refresh – HTML “META Refresh tag”
causes periodic client poll

• What is the polling frequency for clients and
servers?
– Could be adaptive based upon a page’s age and its
rate of change

• Server load is still significant!

Page 3

Lec 24.94/28/08 Joseph CS162 ©UCB Spring 2008

WWW Proxy Caches

• Place caches in the network to reduce server load

– But, increases latency in lightly loaded case

– Caches near servers called “reverse proxy caches”
» Offloads busy server machines

– Caches at the “edges” of the network called “content
distribution networks”

» Offloads servers and reduce client latency

• Challenges:
– Caching static traffic easy, but only ~40% of traffic

– Dynamic and multimedia is harder
» Multimedia is a big win: Megabytes versus Kilobytes

– Same cache consistency problems as before

• Caching is changing the Internet architecture
– Places functionality at higher levels of comm. protocols

Lec 24.104/28/08 Joseph CS162 ©UCB Spring 2008

Schematic View of NFS Architecture

Lec 24.114/28/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Project #4 design deadline is Thu 5/1 at 11:59pm
– See newsgroup for design doc details
– Code deadline is Wed 5/14

• Final Exam
– May 21st, 12:30-3:30pm

• Final Topics: Any suggestions?
– Please send them to me…

Lec 24.124/28/08 Joseph CS162 ©UCB Spring 2008

Network File System (NFS)

• Three Layers for NFS system
– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Page 4

Lec 24.134/28/08 Joseph CS162 ©UCB Spring 2008

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)
Lec 24.144/28/08 Joseph CS162 ©UCB Spring 2008

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?

No: (F1:V2)

Lec 24.154/28/08 Joseph CS162 ©UCB Spring 2008

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the
same as if all processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:

Client 2:
Client 3: Read: parts of B or C

Time

Lec 24.164/28/08 Joseph CS162 ©UCB Spring 2008

NFS Pros and Cons

• NFS Pros:

– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!

– Doesn’t scale to large # clients
» Must keep checking to see if caches out of date

» Server becomes bottleneck due to polling traffic

Page 5

Lec 24.174/28/08 Joseph CS162 ©UCB Spring 2008

Andrew File System

• Andrew File System (AFS, late 80’s)  DCE DFS
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy

– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()

– Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible
immediately to other programs who have file open

• In AFS, everyone who has file open sees old version
– Don’t get newer versions until reopen file

Lec 24.184/28/08 Joseph CS162 ©UCB Spring 2008

Andrew File System (con’t)

• Data cached on local disk of client as well as memory
– On open with a cache miss (file not on local disk):

» Get file from server, set up callback with server
– On write followed by close:

» Send copy to server; tells all clients with copies to fetch
new version from server on next open (using callbacks)

• What if server crashes? Lose all callback state!
– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 24.194/28/08 Joseph CS162 ©UCB Spring 2008

Summary

• VFS: Virtual File System layer
– Provides mechanism which gives same system call
interface for different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS: Network File System
» AFS: Andrew File System

– Caching for performance
• Cache Consistency: Keeping contents of client caches

consistent with one another
– If multiple clients, some reading and some writing, how
do stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks so can be notified by
server of changes

BREAK

Page 6

Lec 24.214/28/08 Joseph CS162 ©UCB Spring 2008

Internet Worms

• Self-replicating, self-propagating code
and data

• Use network to find potential victims

• Typically exploit vulnerabilities in an
application running on a machine or the
machine’s operating system to gain a
foothold

• Then search the network for new victims

Lec 24.224/28/08 Joseph CS162 ©UCB Spring 2008

Sapphire (AKA Slammer) Worm

• January 25, 2003

• Fastest computer worm in history

– Used MS SQL Server buffer overflow
vulnerability

– Doubled in size every 8.5 seconds, 55M scans/sec

– Infected >90% of vulnerable hosts within 10 mins

– Infected at least 75,000 hosts

– Caused network outages, canceled airline flights,
elections problems, interrupted E911 service, and
caused ATM failures

Lec 24.234/28/08 Joseph CS162 ©UCB Spring 2008

Before Sapphire

Lec 24.244/28/08 Joseph CS162 ©UCB Spring 2008

After Sapphire

Page 7

Lec 24.254/28/08 Joseph CS162 ©UCB Spring 2008

Worm Propagation Behavior

• More efficient scanning finds victims faster (< 1hr)

• Even faster propagation is possible if you cheat

– Wasted effort scanning non-existent or non-vulnerable hosts

– Warhol: seed worm with a “hit list” of vulnerable hosts (15
mins)

Lec 24.264/28/08 Joseph CS162 ©UCB Spring 2008

Internet Viruses

• Self-replicating code and data

• Typically requires human interaction before
exploiting an application vulnerability

– Running an e-mail attachment

– Clicking on a link in an e-mail

– Inserting/connecting “infected” media to a
PC

• Then search for files to infect or sends out
e-mail with an infected file

Lec 24.274/28/08 Joseph CS162 ©UCB Spring 2008

LoveLetter Virus (May 2000)

• E-mail message
with VBScript
(simplified Visual
Basic)

• Relies on
Windows
Scripting Host

– Enabled by
default in
Win98/2000

• User clicks on
attachment
 infected!

Lec 24.284/28/08 Joseph CS162 ©UCB Spring 2008

LoveLetter’s Impact

• Approx 60 – 80% of US companies infected
by the "ILOVEYOU" virus

• Several US gov. agencies and the Senate
were hit

• > 100,000 servers in Europe

• Substantial lost data from replacement of
files with virus code

– Backups anyone?

• Could have been worse – not all viruses
require opening of attachments…

Page 8

Lec 24.294/28/08 Joseph CS162 ©UCB Spring 2008

Worm/Virus Summary

• Worms are a critical threat

– More than 100 companies, including Financial
Times, ABCNews and CNN, were hit by the
Zotob Windows 2000 worm in August 2005

• Viruses are a critical threat

– FBI survey of 269 companies in 2004 found
that viruses caused ~$55 million in damages

– DIY toolkits proliferate on Internet

• How can we protect against worms and
viruses?

– Scanners

– Firewalls

– …

