
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 25

Protection and Security
in Distributed Systems

May 5, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 25.25/5/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Security Mechanisms

– Authentication

– Authorization

– Enforcement

• Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 25.35/5/08 Joseph CS162 ©UCB Spring 2008

Protection vs Security

• Protection: one or more mechanisms for controlling the
access of programs, processes, or users to resources
– Page Table Mechanism
– File Access Mechanism

• Security: use of protection mechanisms to prevent
misuse of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Requires consideration of the external environment
within which the system operates

» Most well-constructed system cannot protect information
if user accidentally reveals password

• What we hope to gain today and next time
– Conceptual understanding of how to make systems secure
– Some examples, to illustrate why providing security is
really hard in practice

Lec 25.45/5/08 Joseph CS162 ©UCB Spring 2008

Preventing Misuse

• Types of Misuse:
– Accidental:

» If I delete shell, can’t log in to fix it!
» Could make it more difficult by asking: ―do you really want

to delete the shell?‖
– Intentional:

» Some high school brat who can’t get a date, so instead he
transfers $3 billion from B to A.

» Doesn’t help to ask if they want to do it (of course!)
• Three Pieces to Security

– Authentication: who the user actually is
– Authorization: who is allowed to do what
– Enforcement: make sure people do only what they are
supposed to do

• Loopholes in any carefully constructed system:
– Log in as superuser and you’ve circumvented
authentication

– Log in as self and can do anything with your resources;
for instance: run program that erases all of your files

– Can you trust software to correctly enforce
Authentication and Authorization?????

Page 2

Lec 25.55/5/08 Joseph CS162 ©UCB Spring 2008

Authentication: Identifying Users

• How to identify users to the system?
– Passwords

» Shared secret between two parties
» Since only user knows password, someone types correct

password  must be user typing it
» Very common technique

– Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge  response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

Lec 25.65/5/08 Joseph CS162 ©UCB Spring 2008

Passwords: Secrecy
• System must keep copy of secret to

check against passwords
– What if malicious user gains access to list
of passwords?

» Need to obscure information somehow
– Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

• Example: UNIX /etc/passwd file
– passwdone way transform(hash)encrypted passwd
– System stores only encrypted version, so OK even if
someone reads the file!

– When you type in your password, system compares
encrypted version

• Problem: Can you trust encryption algorithm?
– Example: one algorithm thought safe had back door

» Governments want back door so they can snoop
– Also, security through obscurity doesn’t work

» GSM encryption algorithm was secret; accidentally released;
Berkeley grad students cracked in a few hours

―eggplant
‖

Lec 25.75/5/08 Joseph CS162 ©UCB Spring 2008

Passwords: How easy to guess?

• Ways of Compromising Passwords
– Password Guessing:

» Often people use obvious information like birthday,
favorite color, girlfriend’s name, etc…

– Dictionary Attack:
» Work way through dictionary and compare encrypted

version of dictionary words with entries in /etc/passwd
– Dumpster Diving:

» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)

• Paradox:
– Short passwords are easy to crack
– Long ones, people write down!

• Technology means we have to use longer passwords
– UNIX initially required lowercase, 5-letter passwords:
total of 265=10million passwords

» In 1975, 10ms to check a password1 day to crack
» In 2005, .01μs to check a password0.1 seconds to crack

– Takes less time to check for all words in the dictionary!

Lec 25.85/5/08 Joseph CS162 ©UCB Spring 2008

Passwords: Making harder to crack

• How can we make passwords harder to crack?
– Can’t make it impossible, but can help

• Technique 1: Extend everyone’s password with a unique
number (stored in password file)
– Called ―salt‖. UNIX uses 12-bit ―salt‖, making dictionary
attacks 4096 times harder

– Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

– Also, way that salt is combined with password designed to
frustrate use of off-the-shelf DES hardware

• Technique 2: Require more complex passwords
– Make people use at least 8-character passwords with
upper-case, lower-case, and numbers

» 708=6x1014=6million seconds=69 days@0.01μs/check
– Unfortunately, people still pick common patterns

» e.g. Capitalize first letter of common word, add one digit

Page 3

Lec 25.95/5/08 Joseph CS162 ©UCB Spring 2008

Passwords: Making harder to crack (con’t)
• Technique 3: Delay checking of passwords

– If attacker doesn’t have access to /etc/passwd, delay
every remote login attempt by 1 second

– Makes it infeasible for rapid-fire dictionary attack
• Technique 4: Assign very long passwords

– Long passwords or pass-phrases can have more entropy
(randomnessharder to crack)

– Give everyone a smart card (or ATM card) to carry around
to remember password

» Requires physical theft to steal password
» Can require PIN from user before authenticates self

– Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number

• Technique 5: ―Zero-Knowledge Proof‖
– Require a series of challenge-response questions

» Distribute secret algorithm to user
» Server presents a number, say ―5‖; user computes something

from the number and returns answer to server
» Server never asks same ―question‖ twice

– Often performed by smartcard plugged into system
Lec 25.105/5/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• Project #4 code deadline is Wed 5/14 at 11:59pm

• Final Exam
– May 21st, 12:30-3:30pm

• Final Topics: Any suggestions?
– Please send them to me…

Lec 25.115/5/08 Joseph CS162 ©UCB Spring 2008

Authentication in Distributed Systems

• What if identity must be established across network?

– Need way to prevent exposure of information while still
proving identity to remote system

– Many of the original UNIX tools sent passwords over the
wire ―in clear text‖

» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

NetworkPA
S
S
: gina

Lec 25.125/5/08 Joseph CS162 ©UCB Spring 2008

Private Key Cryptography

• Private Key (Symmetric) Encryption:
– Single key used for both encryption and decryption

• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Pla
inte

x
t

Pla
inte

x
tSPY CIA

Page 4

Lec 25.135/5/08 Joseph CS162 ©UCB Spring 2008

Key Distribution

• How do you get shared secret to both places?
– For instance: how do you send authenticated, secret mail
to someone who you have never met?

– Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others

• Third Party: Authentication Server (like Kerberos)
– Notation:

» Kxy is key for talking between x and y
» (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

– A asks server for key:
» AS: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

– Server returns session key encrypted using B’s key
» SA: Message [Use Kab (This is A! Use Kab)Ksb] Ksa

» This allows A to know, ―S said use this key‖
– Whenever A wants to talk with B

» AB: Ticket [This is A! Use Kab]Ksb

» Now, B knows that Kab is sanctioned by S
Lec 25.145/5/08 Joseph CS162 ©UCB Spring 2008

Authentication Server Continued

• Details
– Both A and B use passwords (shared with key server) to
decrypt return from key servers

– Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later

– Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages

– Want to minimize # times A types in password
» AS (Give me temporary secret)
» SA (Use Ktemp-sa for next 8 hours)Ksa

» Can now use Ktemp-sa in place of Ksa in prototcol

Key
Server

Ticket

Secure Communication

Lec 25.155/5/08 Joseph CS162 ©UCB Spring 2008

Public Key Encryption
• Can we perform key distribution without an

authentication server?
– Yes. Use a Public-Key Cryptosystem.

• Public Key Details
– Don’t have one key, have two: Kpublic, Kprivate

» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1  ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
Lec 25.165/5/08 Joseph CS162 ©UCB Spring 2008

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic

– Provides restricted sender and receiver
• But: how does Alice know that it was Bob who sent

her Bpublic? And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Page 5

Lec 25.175/5/08 Joseph CS162 ©UCB Spring 2008

Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the ―digest‖ of M1.

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily
find other message with same digest as given message.

– It is infeasible to locate two messages, m1 and m2,
which ―collide‖, i.e. for which H(m1) = H(m2)

– A small change in a message changes many bits of
digest/can’t tell anything about message given its hash

DFCD3454BBEA788A

751A696C24D97009

CA992D17

The red fox
runs across

the ice

Hash
Function

Hash
Function

52ED879E70F71D92

6EB6957008E03CE4

CA6945D3

Fox

Lec 25.185/5/08 Joseph CS162 ©UCB Spring 2008

Use of Hash Functions

• Several Standard Hash Functions:
– MD5: 128-bit output
– SHA-1: 160-bit output

• Can we use hashing to securely reduce load on server?
– Yes. Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data

Mirror

File X

Read X

File X

Server

Obsolete: Use SHA-256 or SHA 512

BREAK

Lec 25.205/5/08 Joseph CS162 ©UCB Spring 2008

Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.
– Often, we think of Xpublic as a ―principle‖ (user)

• Suppose we want X to sign message M?
– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that
we have is really from X???
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– X goes to organization, presents identifying papers

» Organization signs X’s key: [Xpublic, H(Xpublic)CAprivate]
» Called a ―Certificate‖

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted

authority
• How do we get keys of certificate authority?

– Compiled into your browser, for instance!

Page 6

Lec 25.215/5/08 Joseph CS162 ©UCB Spring 2008

(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use public-key encryption
for key-distribution

• Server has a certificate signed by certificate authority
– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte ―master secret‖
– Client sends 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its
certificate certs

– Client verifies certificate by checking with public key of
certificate authority compiled into browser

» Also check expiration date
– Client picks 46-byte ―premaster‖ secret (pms), encrypts
it with public key of server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way

and collision-resistant function on three values
» Random ―nonces‖ nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc

Lec 25.225/5/08 Joseph CS162 ©UCB Spring 2008

SSL Pitfalls

• Netscape claimed to provide secure comm. (SSL)

– So you could send a credit card # over the Internet

• Three problems (reported in NYT):
– Algorithm for picking session keys was predictable
(used time of day) – brute force key in a few hours

– Made new version of Netscape to fix #1, available to
users over Internet (unencrypted!)

» Four byte patch to Netscape executable makes it
always use a specific session key

» Could insert backdoor by mangling packets containing
executable as they fly by on the Internet.

» Many mirror sites (including Berkeley) to redistribute
new version – anyone with root access to any machine
on LAN at mirror site could insert the backdoor

– Buggy helper applications – can exploit any bug in
either Netscape, or its helper applications

Lec 25.235/5/08 Joseph CS162 ©UCB Spring 2008

Authorization: Who Can Do What?

• How do we decide who is
authorized to do actions in the
system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…

– Domains in columns
» A domain might be a user or a

group of permissions

» E.g. above: User D3 can read
F2 or execute F3

– In practice, table would be
huge and sparse!

Lec 25.245/5/08 Joseph CS162 ©UCB Spring 2008

Authorization: Two Implementation Choices

• Access Control Lists: store permissions with object
– Still might be lots of users!

– UNIX limits each file to: r,w,x for owner, group, world

– More recent systems allow definition of groups of users
and permissions for each group

– ACLs allow easy changing of an object’s permissions
» Example: add Users C, D, and F with rw permissions

• Capability List: each process tracks which objects has
permission to touch
– Popular in the past, idea out of favor today

– Consider page table: Each process has list of pages it
has access to, not each page has list of processes …

– Capability lists allow easy changing of a domain’s
permissions

» Example: you are promoted to system administrator and
should be given access to all system files

Page 7

Lec 25.255/5/08 Joseph CS162 ©UCB Spring 2008

Authorization: Combination Approach

• Users have capabilities,
called ―groups‖ or ―roles‖
– Everyone with particular

group access is ―equivalent‖
when accessing group
resource

– Like passport (which gives
access to country of origin)

• Objects have ACLs

– ACLs can refer to users or
groups

– Change object permissions
by modifying ACL

– Change broad user
permissions via changes in
group membership

– Possessors of proper
credentials get access

Lec 25.265/5/08 Joseph CS162 ©UCB Spring 2008

Authorization: How to Revoke?

• How does one revoke someone’s access rights to
a particular object?

– Easy with ACLs: just remove entry from the list

– Takes effect immediately since the ACL is checked
on each object access

• Harder to do with capabilities since they aren’t
stored with the object being controlled:

– Not so bad in a single machine: could keep all
capability lists in a well-known place (e.g., the OS
capability table).

– Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

Lec 25.275/5/08 Joseph CS162 ©UCB Spring 2008

Revoking Capabilities

• Various approaches to revoking capabilities:

– Put expiration dates on capabilities and force
reacquisition

– Put epoch numbers on capabilities and revoke all
capabilities by bumping the epoch number (which
gets checked on each access attempt)

– Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

– Maintain a revocation list that gets checked on
every access attempt

Lec 25.285/5/08 Joseph CS162 ©UCB Spring 2008

How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from ―Joe’s Game
World‖ and then run it.

– It’s running with your userid
» It removes all the files you own, including the project due

the next day…
• How can you prevent this?

– Have to run the program under some userid.
» Could create a second games userid for the user, which

has no write privileges.
» Like the ―nobody‖ userid in UNIX – can’t do much

– But what if the game needs to write out a file recording
scores?

» Would need to give write privileges to one particular file
(or directory) to your games userid.

– But what about non-game programs you want to use,
such as Quicken?

» Now you need to create your own private quicken userid, if
you want to make sure tha the copy of Quicken you bought
can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…

Page 8

Lec 25.295/5/08 Joseph CS162 ©UCB Spring 2008

Authorization Continued

• Principle of least privilege: programs, users, and
systems should get only enough privileges to perform
their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges
is needed to run your programs?

– People often run at higher privilege then necessary
» Such as the ―administrator‖ privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby
dealing with the problem by means of authentication

– Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them

» Actually, not always fine: recently, one of Microsoft’s
signing keys was compromised, leading to malicious
software that looked valid

– What about new startups?
» Who ―validates‖ them?
» How easy is it to fool them?

Lec 25.305/5/08 Joseph CS162 ©UCB Spring 2008

Summary

• User Identification
– Passwords/Smart Cards/Biometrics

• Passwords
– Encrypt them to help hid them
– Force them to be longer/not amenable to dictionary attack
– Use zero-knowledge request-response techniques

• Distributed identity
– Use cryptography

• Private Key Encryption (also Symmetric Key)
– Single Key used to encode and decode
– Pros: Very Fast

» can encrypt at network speed (even without hardware)
– Cons: Need to distribute secret key to both parties

Lec 25.315/5/08 Joseph CS162 ©UCB Spring 2008

Summary (cont’d)

• Secure Hash Function
– Fixed length summary of data
– Hard to find another block of data with same hash

• Public Key Encryption (also Asymmetric Key)
– Two keys: a public key and a private key

» Not derivable from one another
– Pros: Can distribute keys in public

» Need certificate authority (Public Key Infrastructure)
– Cons: Very Slow

» 100—1000 times slower than private key encryption

• Session Key
– Randomly generated private key used for single session
– Often distributed via public key encryption

