
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 26

Protection and Security
in Distributed Systems II

May 7, 2008

Prof. Anthony D. Joseph

http://inst.eecs.berkeley.edu/~cs162

Lec 26.25/7/08 Joseph CS162 ©UCB Spring 2008

Review: Private Key Cryptography

• Private Key (Symmetric) Encryption:
– Single key used for both encryption and decryption

• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Pla
inte

x
t

Pla
inte

x
tSPY CIA

Lec 26.35/7/08 Joseph CS162 ©UCB Spring 2008

Review: Public Key Encryption

• Key distribution without an authentication server
• Public Key Details

– Don’t have one key, have two: Kpublic, Kprivate
» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1  ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography

Lec 26.45/7/08 Joseph CS162 ©UCB Spring 2008

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of permissions

» E.g. above: User D3 can read F2 or execute F3
– In practice, table would be huge and sparse!

• Two approaches to implementation
– Access Control Lists: store permissions with each object

» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
– Capability List: each process tracks objects has
permission to touch

» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Recall: Authorization: Who Can Do What?

Page 2

Lec 26.55/7/08 Joseph CS162 ©UCB Spring 2008

Goals for Today

• Distributed Authorization

• Enforcement

• Security Problems
– Buffer Overflow

– Morris Internet Worm

– Password Checking

– Self-Replicating Programs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 26.65/7/08 Joseph CS162 ©UCB Spring 2008

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» adj@mit.edu  adj@lcs.mit.edu  adj@cs.berkeley.edu
» However, someone thought their friend was adj@mit.edu

and I got very private email intended for someone else…
– Need something better, more unique to identify person

• Suppose want to connect with any server at any time?
– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization

Domains

Lec 26.75/7/08 Joseph CS162 ©UCB Spring 2008

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)

» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key:
0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

R
e
a
d

G
ro

up

G
A
C
L

Lec 26.85/7/08 Joseph CS162 ©UCB Spring 2008

Analysis of Previous Scheme

• Positive Points:
– Identities checked via signatures and public keys

» Client can’t generate request for data unless they have
private key to go with their public identity

» Server won’t use ACLs not properly signed by owner of file
– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

• Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

– Better to have unique string identifying you that people
place into ACLs

» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key

» Client Request: (request + unique ID)Cprivate; give server
certificate if they ask for it.

» Key compromisemust distribute “certificate revocation”,
since can’t wait for previous certificate to expire.

– What if you remove someone from ACL of a given file?
» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Page 3

Lec 26.95/7/08 Joseph CS162 ©UCB Spring 2008

Analysis Continued
• Who signs the data?

– Or: How does the client know they are getting valid
data?

– Signed by server?
» What if server compromised? Should client trust server?

– Signed by owner of file?
» Better, but now only owner can update file!
» Pretty inconvenient!

– Signed by group of servers that accepted latest update?
» If must have signatures from all servers  Safe, but one

bad server can prevent update from happening
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

• How do you know that data is up-to-date?
– Valid signature only means data is valid older version
– Freshness attack:

» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
– Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agreement?)

Lec 26.105/7/08 Joseph CS162 ©UCB Spring 2008

Enforcement

• Enforcer checks passwords, ACLs, etc
– Makes sure that only authorized actions take place
– Bugs in enforcer  things for malicious users to exploit

• In UNIX, superuser can do anything
– Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

– If there is a bug in any one of these programs, you lose!
• Paradox

– Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

– Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

• Same argument for Java or C++: What do you make
private vs public?
– Hard to make sure that code is usable but only necessary
modules are public

– Pick something in middle? Get bugs and weak protection!

Lec 26.115/7/08 Joseph CS162 ©UCB Spring 2008

State of the World

• State of the World in Security
– Authentication: Encryption

» But almost no one encrypts or has public key identity
– Authorization: Access Control

» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing

– Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!

• Some types of security problems
– Abuse of privilege

» If the superuser is evil, we’re all in trouble/can’t do anything
» What if sysop in charge of instructional resources went

crazy and deleted everybody’s files (and backups)???
– Imposter: Pretend to be someone else

» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping password

» Allows “rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted

userinstall .rhosts file granting you access
Lec 26.125/7/08 Joseph CS162 ©UCB Spring 2008

Involuntary Installation
• What about software loaded without your consent?

– Macros attached to documents (such as Microsoft Word)
– Active X controls (programs on web sites with potential
access to whole machine)

– Spyware included with normal products
• Active X controls can have access to the local machine

– Install software/Launch programs
• Sony Spyware [Sony XCP] (October 2005)

– About 50 recent CDs from Sony automatically install
software when you played them on Windows machines

» Called XCP (Extended Copy Protection)
» Modify operating system to prevent more than 3 copies

and to prevent peer-to-peer sharing
– Side Effects:

» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for

other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)

– Vendors of virus protection software declare it spyware
» Computer Associates, Symantec, even Microsoft

Page 4

Lec 26.135/7/08 Joseph CS162 ©UCB Spring 2008

Administrivia

• No office hours on Tue 5/13

• Project #4 code deadline is Wed 5/14 at 11:59pm

• Final Exam
– May 21st, 12:30-3:30pm
– Exam will be comprehensive
– Closed book, notes, slides
– One 2-sided cheat sheet allowed

• Final Topics: Any suggestions?
– Please send them to me by Thursday…

Lec 26.145/7/08 Joseph CS162 ©UCB Spring 2008

Other Security Problems

• Virus:
– A piece of code that attaches itself to a program or file
so it can spread from one computer to another, leaving
infections as it travels

– Most attached to executable files, so don’t get
activated until the file is actually executed

– Once caught, can hide in boot tracks, other files, OS
• Worm:

– Similar to a virus, but capable of traveling on its own
– Takes advantage of file or information transport
features

– Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself

• Trojan Horse:
– Named after huge wooden horse in Greek mythology
given as gift to enemy; contained army inside

– At first glance appears to be useful software but does
damage once installed or run on your computer

Lec 26.155/7/08 Joseph CS162 ©UCB Spring 2008

Security Problems: Buffer-overflow Condition
#define BUFFER_SIZE 256
int process(int argc,

char *argv[])
{
char buffer[BUFFER_SIZE];
if (argc < 2)

return -1;
else {

strcpy(buffer,argv[1]);
return 0;

}
} Before attack After attack

• Technique exploited by many network attacks
– Anytime input comes from network request and is not
checked for size

– Allows execution of code with same privileges as running
program – but happens without any action from user!

• How to prevent?
– Don’t code this way! (ok, wishful thinking)
– New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “don’t execute code in this page”
Lec 26.165/7/08 Joseph CS162 ©UCB Spring 2008

The Morris Internet Worm

• Internet worm (Self-reproducing)
– Author Robert Morris, a first-year Cornell grad student
– Launched close of workday on November 2, 1988
– Within a few hours of release, it consumed resources to
the point of bringing down infected machines

• Techniques
– Exploited UNIX networking features (remote access)
– Bugs in finger (buffer overflow) and sendmail programs
(debug mode allowed remote login)

– Dictionary lookup-based password cracking
– Grappling hook program uploaded main worm program

Page 5

Lec 26.175/7/08 Joseph CS162 ©UCB Spring 2008

Some other Attacks

• Trojan Horse Example: Fake Login
– Construct a program that looks like normal login program
– Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

– In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

• Salami attack: Slicing things a little at a time
– Steal or corrupt something a little bit at a time
– E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

• Eavesdropping attack
– Tap into network and see everything typed
– Catch passwords, etc
– Lesson: never use unencrypted communication!

Lec 26.185/7/08 Joseph CS162 ©UCB Spring 2008

Tenex Password Checking

• Tenex – early 70’s, BBN

– Most popular system at universities before UNIX

– Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

– In 48 hours, they figured out how to get every
password in the system

• Here’s the code for the password check:

for (i = 0; i < 8; i++)

if (userPasswd[i] != realPasswd[i])

go to error

• How many combinations of passwords?

– 2568?

– Wrong!

Lec 26.195/7/08 Joseph CS162 ©UCB Spring 2008

Defeating Password Checking

• Tenex used VM, and it interacts badly with the above code

– Key idea: force page faults at inopportune times to break
passwords quickly

• Arrange 1st char in string to be last char in pg, rest on next pg

– Then arrange for pg with 1st char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 1st page)

a|aaaaaa

|

page in memory| page on disk

• Time password check to determine if first character is correct!

– If fast, 1st char is wrong

– If slow, 1st char is right, pg fault, one of the others wrong

– So try all first characters, until one is slow

– Repeat with first two characters in memory, rest on disk

• Only 256 * 8 attempts to crack passwords

– Fix is easy, don’t stop until you look at all the characters
Lec 26.205/7/08 Joseph CS162 ©UCB Spring 2008

Defense in Depth: Layered Network Security
• How do I minimize the damage when security fails?

– For instance: I make a mistake in the specification
– Or: A bug lets something run that shouldn’t?

• Firewall: Examines every packet to/from public internet
– Can disable all traffic to/from certain ports
– Can route certain traffic to DMZ (De-Militarized Zone)

» Semi-secure area separate from critical systems
– Can do network address translation

» Inside network, computers have private IP addresses
» Connection from insideoutside is translated
» E.g. [10.0.0.2,port 2390]  [169.229.60.38,port 80]

[12.4.35.2,port 5592]  [169.229.60.38,port 80]

Page 6

Lec 26.215/7/08 Joseph CS162 ©UCB Spring 2008

Shrink Wrap Software Woes

• Can I trust software installed by the computer
manufacturer?

– Not really, most major computer manufacturers
have shipped computers with viruses

– How?
» Forgot to update virus scanner on “gold” master

machine

• Software companies, PR firms, and others
routinely release software that contains viruses

• Linux hackers say “Start with the source”
– Does that work?

Lec 26.225/7/08 Joseph CS162 ©UCB Spring 2008

Ken Thompson’s self-replicating program

• Bury Trojan horse in binaries, so no evidence in source
– Replicates itself to every UNIX system in the world and
even to new UNIX’s on new platforms. No visible sign.

– Gave Ken Thompson ability to log into any UNIX system
• Two steps: Make it possible (easy); Hide it (tricky)
• Step 1: Modify login.c

A: if (name == “ken”)
don’t check password
log in as root

– Easy to do but pretty blatant! Anyone looking will see.
• Step 2: Modify C compiler

– Instead of putting code in login.c, put in compiler:
B: if see trigger1

insert A into input stream

– Whenever compiler sees trigger1 (say /*gobbledygook*/),
puts A into input stream of compiler

– Now, don’t need A in login.c, just need trigger1

Lec 26.235/7/08 Joseph CS162 ©UCB Spring 2008

Self Replicating Program Continued

• Step 3: Modify compiler source code:
C: if see trigger2

insert B+C into input stream

– Now compile this new C compiler to produce binary
• Step 4: Self-replicating code!

– Simply remove statement C in compiler source code and
place “trigger2” into source instead

» As long as existing C compiler is used to recompile the C
compiler, the code will stay into the C compiler and will
compile back door into login.c

» But no one can see this from source code!

• When porting to new machine/architecture, use
existing C compiler to generate cross-compiler
– Code will migrate to new architecture!

• Lesson: never underestimate the cleverness of
computer hackers for hiding things!

Lec 26.245/7/08 Joseph CS162 ©UCB Spring 2008

Conclusion

• Authorization
– Abstract table of users (or domains) vs permissions
– Implemented either as access-control list or capability list

• Issues with distributed storage example
– Revocation: How to remove permissions from someone?
– Integrity: How to know whether data is valid
– Freshness: How to know whether data is recent

• Buffer-Overrun Attack: exploit bug to execute code

• Want to learn more about security? Take CS 161

