
CS 162 Nachos Tutorial

Image courtesy of Thomas Andersen: http://www.cs.washington.edu/homes/tom/nachos/

Outline

• What is Nachos?
– Capabilities, purpose, history

• How does it work?
• What am I supposed to do?

– The 4 phases
• How do I get started?

What is Nachos?

• An instructional operating system

• Includes many facets of a real OS:
– Threads

– Interrupts

– Virtual Memory

– I/O driven by interrupts

• You can (and will) modify and extend it

What else is Nachos?

• Nachos also contains some hardware
simulation.
– MIPS processor

• Can handle MIPS code in standard COFF, except for
floating point instructions

• You can (and will) write code in C, compile it to MIPS
and run it on Nachos.

– Console

– Network interface

– Timer

Why Nachos?

• What better way to learn how an OS
works than by building one?

• Much easier and more reasonable to build
a simulated OS (in Java)

• Skeleton code allows us to work on,
replace, or upgrade one piece at a time.

Why Java?

• Java much simpler than C++

• Java is type-safe – can’t write off the end
of an array, easier to debug

• Much easier and more reasonable to
machine grade a Java project

• More portable

History of Nachos

• Originally created here at Berkeley in
1992 in C++ (and a little assembly)

• By Wayne A. Christopher, Steven J.
Procter, and Thomas E. Anderson

• Used at many universities
• Rewritten in Java by Daniel Hettena

– Now simpler, easier to grade, type-safe,
portable, and more students now know
Java.

How does Nachos work?

• Entirely written in Java

• Broken into Java packages:
– nachos.ag (autograder classes)

– nachos.machine (most of the action)

– nachos.network (Phase 4)

– nachos.security (tracks priviledge)

– nachos.threads (Phase 1)

– nachos.userprog (Phase 2)

– nachos.vm (Phase 3)

Nachos Architecture

Hardware

(Real) OS

JVM

Nachos
Kernel Simulated HW

User
Program

User
ProgramNachos

Booting Nachos

• When you run Nachos, it starts in
nachos.machine.Machine.main

• Machine.main initializes devices - interrupt
controller, timer, MIPS processor, console,
file system

• Passes control to the autograder.
• AutoGrader will create a kernel and start it

(this starts the OS)

The Machine!

• nachos.machine.Machine

• Kicks off the system, and provides access
to various hardware devices:
– Machine.interrupt()

– Machine.timer()

– Machine.console()

– Machine.networkLink()

Interrupt Controller

• Kicks off hardware interrupts
• nachos.machine.Interrupt class

maintains an event queue, clock
• Clock ticks under two conditions:

– One tick for executing a MIPS instruction
– Ten ticks for re-enabling interrupts

• After any tick, Interrupt checks for
pending interrupts, and runs them.

• Calls device event handler, not software
interrupt handler

Interrupt Controller (cont.)

• Important methods, accessible to other
hardware simulation devices:
– schedule() takes a time, handler
– tick() takes a boolean (1 or 10 ticks)
– checkIfDue() invokes due interrupts
– enable()
– disable()

• All hardware devices depend on
interrupts - they don’t get threads.

Timer

• nachos.machine.Timer

• Hardware device causes interrupts
about every 500 ticks (not exact)

• Important methods:
– getTime() tells many ticks so far

– setInterruptHandler() tells the timer what to
do when it goes off

• Provides preemption

Serial Console
• Java interface nachos.machine.SerialConsole
• Contains methods:

– readByte() returns one byte (or -1) and waits to
interrupt when it has more

– writeByte() takes one byte and waits to interrupt
when its ready for more

– setInterruptHandlers() tells the console who to call
when it receives data or finishes sending data

• Normally implemented by
nachos.machine.StandardConsole, hooked up
to stdin and stdout
– Schedules read event every Stats.ConsoleTime

ticks to polls stdin & invokes interrupt handler

Other Hardware Devices

• Disk
– Didn’t make the jump to Java from C++, we

don’t use it for our Nachos assignments

• Network Link
– Similar to console, but packet based.

– Used for Phase 4.

– You should be able to figure it out by then.

The Kernel
• Abstract class nachos.machine.Kernel

• Important methods
– initialize() initializes the kernel, duh!

– selfTest() performs test (not used by ag)

– run() runs any user code (none for 1st phase)

– terminate() Game over. Never returns.

• Each Phase will have its own Kernel subclass

Threading

• Happens in package nachos.threads
• All Nachos threads are instances of

nachos.thread.KThread (or subclass)
• KThread has status

– New, Ready, Running, Blocked, Finished

• Every KThread also has a
nachos.machine.TCB

• Internally implemented by Java threads

Running threads

• Create a java.lang.Runnable(), make a
Kthread, and call fork().

• Example:
class Sprinter implements Runnable {

public void run() {

// run real fast

 }

}

Sprinter s = new Sprinter();

new KThread(s).fork();

Scheduler

• Some subclass of
nachos.machine.Scheduler

• Creates ThreadQueue objects which
decide what thread to run next.

• Defaults to RoundRobinScheduler

• Specified in Nachos configuration file

Nachos Configuration

• nachos.conf file lets you specify many
options
– which classes to use for Kernel, Scheduler

– whether to be able to run user progs

– etc.

• Different one for each project.

Creating the First Thread

• ThreadedKernel.initialize
 public void initialize(String[] args) {

......

// start threading

new KThread(null);

......

}

• What does KThread perform?

• What thread does it create?

Advanced Topics

• The simulated MIPS processor

• Address translation

• User level process

• Syscalls and exception handling

• You will get to know more when we get
there

How are we using it?

• Four Nachos assignments - “Phases”

• Phase 1 - Threading

• Phase 2 - Multiprogramming

• Phase 3 - Caching and Virtual Memory

• Phase 4 - Networks and Distributed
Systems

Nachos Projects

Extend & Embrace Nachos

• Add features to Nachos (kernel code)
– Threading

– File system calls

• Implement user programs (in C)

4 Phases

• Phase 1: Thread system (due 2005-02-16)

• Phase 2: Multiprogramming (due 2005-03-07)

• Phase 3: Caching & Virtual Memory (due
2005-03-30)

• Phase 4: Networks & Distributed Systems
(due 2005-04-21)

Phase 1: Threading

• 5%: KThread.join

• 5%: Condition Variables (more efficiently)

• 10%: Alarm

• 20%: Communicator

• 35%: PriorityScheduler

• 25%: Rowing Hawaiian kids

Row boat synchronization

• Get Adults and Children from Oahu to
Molokai

Constraints

• 1 boat

• Boat fits 1 child, or 2 children, or 1 adult

• Pilot required

Phase 2: Multiprogramming

• 30%: File system calls
– creat, open, read, write, close, unlink

• 25%: Multiprogramming
– Multiple users/programs at once

• 30%: System calls
– exec, join, exit

• 15%: LotteryScheduler

Phase 3:Caching & VM

• 30%: Implement TLB, Inverted page table

• 40%: Paged virtual memory
– Fit large program(s) in memory

• 30%: Lazy loading
– Don’t load parts of program until needed

Phase 4: Networking

• 75%: Networking syscalls
– Connect, accept

• 25%: Chat program
– Like IRC

• Workload (grading) percentages given

• Divide work fairly

• Projects depend on each other
– E.g. LotteryScheduler in next project depends

on PriorityScheduler

How to get started

• Go to class web page

• Download and install nachos package

• Read the README, make sure you can
make proj1 OK

• The first phase is posted – initial design
doc due in a week

Advice

• One step at a time. Get a little bit working.
 Then a little more. Then a little more, etc.

• Find a good tool, including a debugger,
and use it. One choice - Eclipse.

For More Information

• README file in the installation has lots of
good stuff

• See the Class Web Page for intros,
background, and the code itself.

• Read the code! You can see exactly what
is going on.

Subversion/CVS

• Allows multiple people to work on code
concurrently

Student 2:
% emacs threads.java
% svn commit threads.java
threads.java committed

Student 1:
% emacs threads.java

% svn commit threads.java
ERROR: Student2 already modified threads.java
Your copy is out of date

% svn update
svn patches (merges changes into) threads.java

% svn commit threads.java
threads.java committed

Subversion

• Reference: http://svnbook.red-bean.com/

• Windows: http://tortoisesvn.tigris.org/

• Eclipse Plugin available

