CS 162 Nachos Tutorial

DOCTOR FUN R

edu
nions expressed herein are not those of the University of Chicago

This cartoon is made available on the Internet for personal viewing only.
or the University of Morth Carelina,

gﬂl (@midway.uchic

@ Copyright 1994 David Farley, World rights reserved.

"This is the planet where nachos rule.”

Image courtesy of Thomas Andersen: http://www.cs.washington.edu/homes/tom/nachos/

Outline

* \What is Nachos?
— Capabillities, purpose, history

* How does it work?

* What am | supposed to do?
— The 4 phases

 How do | get started?

What is Nachos?

* An instructional operating system

 Includes many facets of a real OS:
— Threads
— Interrupts
— Virtual Memory
— 1/O driven by interrupts

* You can (and will) modify and extend it

What else is Nachos?

« Nachos also contains some hardware
simulation.

— MIPS processor
e Can handle MIPS code in standard COFF, except for
floating point instructions

* You can (and will) write code in C, compile it to MIPS
and run it on Nachos.

— Console
— Network interface

— Timer

Why Nachos?

* What better way to learn how an OS
works than by building one?

* Much easier and more reasonable to build
a simulated OS (in Java)

« Skeleton code allows us to work on,
replace, or upgrade one piece at a time.

Why Java?

Java much simpler than C++

Java is type-safe — can'’t write off the end
of an array, easier to debug

Much easier and more reasonable to
machine grade a Java project

More portable

History of Nachos

Originally created here at Berkeley in
1992 in C++ (and a little assembly)

By Wayne A. Christopher, Steven J.
Procter, and Thomas E. Anderson

Used at many universities

Rewritten in Java by Daniel Hettena

— Now simpler, easier to grade, type-safe,
portable, and more students now know
Java.

How does Nachos work?

* Entirely written in Java
* Broken into Java packages:

— NacC
— NacC
— NacC
— NacC
— NacC
— NacC
— NacC

nos.ag (autograder classes)
nos.machine (most of the action)
nos.network (Phase 4)
nos.security (tracks priviledge)
nos.threads (Phase 1)
nos.userprog (Phase 2)

nos.vm (Phase 3)

Nachos Architecture

Nachos _h

Nachos 5
Kernel

User User
Program Program

(Real) OS

Hardware

Booting Nachos

* When you run Nachos, it starts In
nachos.machine.Machine.main

 Machine.main initializes devices - interrupt
controller, timer, MIPS processor, console,
file system

» Passes control to the autograder.

 AutoGrader will create a kernel and start it
(this starts the OS)

The Machine!

* nachos.machine.Machine

 Kicks off the system, and provides access
to various hardware devices:
— Machine.interrupt()
— Machine.timer()
— Machine.console()
— Machine.networkLink()

Interrupt Controller

Kicks off hardware interrupts

nachos.machine.Interrupt class
maintains an event queue, clock

Clock ticks under two conditions:
— One tick for executing a MIPS instruction

— Ten ticks for re-enabling interrupts

After any tick, Interrupt checks for
pending interrupts, and runs them.

Calls device event handler, not software
interrupt handler

Interrupt Controller (cont.)

* Important methods, accessible to other
hardware simulation devices:

— schedule() takes a time, handler

— tick() takes a boolean (1 or 10 ticks)
— checklfDue() invokes due interrupts
—enable()

— disable()

» All hardware devices depend on
interrupts - they don't get threads.

Timer

nachos.machine.Timer

lardware device causes interrupts
about every 500 ticks (not exact)
Important methods:

— getTime() tells many ticks so far

— setinterruptHandler() tells the timer what to
do when it goes off

Provides preemption

Serial Console

e Java interface nachos.machine.SerialConsole

 Contains methods:

— readByte() returns one byte (or -1) and waits to
Interrupt when it has more

— writeByte() takes one byte and waits to interrupt
when its ready for more

— setinterruptHandlers() tells the console who to call
when it receives data or finishes sending data
* Normally implemented by
nachos.machine.StandardConsole, hooked up
to stdin and stdout

— Schedules read event every Stats.ConsoleTime
ticks to polls stdin & invokes interrupt handler

Other Hardware Devices

* Disk
— Didn’t make the jump to Java from C++, we
don’t use it for our Nachos assignments

* Network Link
— Similar to console, but packet based.
— Used for Phase 4.
— You should be able to figure it out by then.

The Kernel

 Abstract class nachos.machine.Kernel

* |Important methods
— initialize() initializes the kernel, duh!
— selfTest() performs test (not used by ag)
— run() runs any user code (none for 1st phase)
— terminate() Game over. Never returns.

« Each Phase will have its own Kernel subclass

Threading

Happens in package nachos.threads

All Nachos threads are instances of
nachos.thread.KThread (or subclass)

KThread has status
— New, Ready, Running, Blocked, Finished

Every KThread also has a
nachos.machine. TCB

Internally implemented by Java threads

Running threads

» Create a java.lang.Runnable(), make a
Kthread, and call fork().

* Example:

class Sprinter implements Runnable {
public void run() {

// run real fast

}
}

Sprinter s = new Sprinter();
new KThread(s) .fork();

Scheduler

Some subclass of
nachos.machine.Scheduler

Creates ThreadQueue objects which
decide what thread to run next.

Defaults to RoundRobinScheduler
Specified in Nachos configuration file

Nachos Configuration

* nachos.conf file lets you specify many
options
— which classes to use for Kernel, Scheduler
— whether to be able to run user progs
— efc.

 Different one for each project.

Creating the First Thread

 ThreadedKernel.initialize

public void 1nitialize (Stringl] args)

// start threading
new KThread(null);

* What does KThread perform?
 \What thread does it create?

{

Advanced Topics

The simulated MIPS processor
Address translation

User level process

Syscalls and exception handling

You will get to know more when we get
there

How are we using it?

Four Nachos assignments - “Phases”
Phase 1 - Threading

Phase 2 - Multiprogramming

Phase 3 - Caching and Virtual Memory

Phase 4 - Networks and Distributed
Systems

Nachos Projects

Extend & Embrace Nachos

» Add features to Nachos (kernel code)
— Threading
— File system calls

* Implement user programs (in C)

4 Phases

Phase 1: Thread system (due 2005-02-16)
Phase 2: Multiprogramming (due 2005-03-07)

Phase 3: Caching & Virtual Memory (due
2005-03-30)

Phase 4: Networks & Distributed Systems
(due 2005-04-21)

Phase 1: Threading

5%: KThread.join

5%: Condition Variables (more efficiently)
10%: Alarm

20%: Communicator

35%: PriorityScheduler

25%: Rowing Hawaiian kids

Row boat synchronization

Molokai

 Get Adults and Children from Oahu to
Molokai

%Hﬁf

T4 4

Iviolokai

Constraints

1 boat
 Boat fits 1 child, or 2 children, or 1 adult

V“&7’¥%’%7 Vj% —

 Pilot required

Phase 2. Multiprogramming

30%: File system calls

— creat, open, read, write, close, unlink
25%: Multiprogramming

— Multiple users/programs at once

30%: System calls

—exec, Joln, exit

15%: LotteryScheduler

Phase 3:Caching & VM

» 30%: Implement TLB, Inverted page table

* 40%: Paged virtual memory
— Fit large program(s) in memory
» 30%: Lazy loading

— Don’t load parts of program until needed

Phase 4: Networking

* 75%: Networking syscalls
— Connect, accept

e 25%: Chat program
— Like IRC

» Workload (grading) percentages given
 Divide work fairly

* Projects depend on each other

— E.g. LotteryScheduler in next project depends
on PriorityScheduler

How to get started

Go to class web page
Download and install nachos package

Read the README, make sure you can
make proj1 OK

The first phase is posted — initial design
doc due in a week

Advice

* One step at a time. Get a little bit working.
Then a little more. Then a little more, etc.

* Find a good tool, including a debugger,
and use it. One choice - Eclipse.

For More Information

« README file in the installation has lots of
good stuff

» See the Class Web Page for intros,
background, and the code itself.

 Read the code! You can see exactly what
IS going on.

Subversion/CVS

* Allows multiple people to work on code
concurrently

Student 1: Student 2:
% emacs threads.java 5 emacs threads.java

% svn commit threads.java
threads.java committed

svn commit threads.java
ERROR: Student’? already modified threads.java
Your copy 1is out of date

H e O°

svn update
svn patches (merges changes into) threads.java

H o°

svn commit threads.java
threads. java committed

H o°

Subversion

» Reference: http://svnbook.red-bean.com/
* Windows: http://tortoisesvn.tigris.org/
* Eclipse Plugin available

