
Kumar Garapaty
CS 162 Notes for 2/9/2009

Last time talking about producers/consumers

Announcement: No discussion tomorrow – Nachos 7pm 306 soda
Readers and Writers Problem – standard problem, shared data – various processes reading and writing
it – obtain decent results

• A shared database with readers and writers, writers can't overlap readers
• It is safe for any number of readers to access the database simultaneously, but each writer must

have exclusive access.
◦ Note write – read modify write
◦ must use semaphores
◦ Checking account
◦ Writers are actually readers too

Constraints
• Scheduling

◦ Writers can only proceed if there are no active readers or writers
◦ Readers can proceed if there are no active or waiting writers – use semaphore oktoread

◦ To keep track of who's r/w – state variables
◦ AR – active, WR- waiting, AW-active WW – waiting, AW is always 0 or 1

Initialization:
 OkToRead = 0; OkToWrite = 0; Mutex = 1,
System starts empty, variables equal 0
Can argue not the most efficient scheduling, scheduling: writers get preference

Reader Process:
 P(Mutex); - lock acces on shared variables
 if ((AW+WW) == 0) - if no writers in system, give permission to read, increments count of
reader
 {
 V(OkToRead);
 AR = AR + 1;
 }
 else WR = WR + 1;
 V(Mutex);
 P(OKToRead);
 --read the necessary data;
 P(mutex); - lock variable
 AR = Ar-1;- decrements active readers
 if (AR ==0 && WW > 0)
 {
 V(OKToWrite);
 AW = AW + 1;
 WW = WW – 1;

 }
 V(Mutex);

Writer Process:
 P(mutex); - locks things
 if ((AW + AR + WW)==0) – nothing in the system (do we need WW - no)
 {
 V(OKToWrite); - permission to write
 AW = AW + 1; - increment active write
 }
 else WW = WW + 1; - wait to write
 V(Mutex); - release mutex
 P(OKToWrite) – permission get through this – if not hangs there
 --write the necessary data
 P(Mutex); - locks
 AW = AW -1; - decrement active writer
 if (WW>0)
 {
 V(OKToWrite); - let one of them go
 AW = AW+1;
 WW = WW-1;
 }
 else while (WR > 0) – keep going till all waiting readers are done
 {
 V(OkToRead)
 AR + AR +1;
 WR = WR -1;
 }
 V(Mutex) – can exit

Another problem: Dining Philosophers Problem

Assume 5 philosophers (works for N). Out to dinner at Italian restaurant. Seated at circular table, with
one fork between each pair of philosophers. Philosophers need 2 forks to eat.

Algorithm for getting forks so that they can eat.

Assume solution must be:

• Symmetric – all philosophers use same algorithm
• Can't number the philosophers as part of the solution – all even get forks (can refer to them in

numbers)
• Efficient – more than one philosopher eats – as many to eat as possible
• No central control

Obvious solution

• a. pick up left fork
• b. pick up right fork; wait if necessary
• c. eat

Fails, due to immediate deadlock – each philosopher ends up with one fork, waiting for right fork – not
an optimal solution

Second

• a. pick up left fork
• b.if available, pick up right fork, else,

◦ (b1) put down left fork
◦ b2 wait for right fork
◦ b3 pick up right fork
◦ b4 pcik up left fork; wait if necessary

• c.eat

Assuming all move in same speed, Fails in opposite order – now each is waiting for left fork.

Solution
N+1 philosophers
semaphore mutex (init 1)
 used for mutual exclusion
array H(0:N), init 'not hungry'
 values 'not hungry, hungry, eating'
semaphore array prisem(0:N), init (0) (“Private semaphore”) - one for each philosopher, hangs up on if
philosophers pick up forks
procedure test(me): - test myself or test neighbors – looks both ways and I am hungry then set state to
eating
 if H((left) != eating and H(me) = hungry
 and H(right)- != eating do
 begin
 H(me) = eating
 V(prisem(me))
 end

cycle begin
 think(philosopher me) – do when they are not eating
 P(mutex) – hungry, locks state
 H(me):= hungry – take forks
 test(me) – looks to see if forks available, sets state to eating, permission to pick up forks
 V(mutex)
 P(prisem(me)) – forks are available, pick them up, only go to it when forks are availble
 eat
 P(mutex) – locks shared state
 H(me):=not hungry – sets state hungry – put down forks
 test(left) – test others
 test(right)
 V(mutex)- unlock state
end

mutex – none of them can change state
Solution is free of deadlock, but permits unbounded delay
It does not prevent starvation – neighbors are hungry and you are hungry sometimes – forks wont be
put down both times
Private semaphore – used to control the progress of each process, and a common semaphore is used to
allow for unambiguous inspection and modification of common state variables.

Threads – 4.1 – 4.4 - text

Thread – lightweight process, is a type of process

• Thread has its own pc, register set values, and stack
• thread shares with 1 or more threads its code, data, and OS resources such as open files with

other threads – normal heavy process – has only 1
• Task consists of the set of threads sharing code, data, etc, a task with one thread is an ordinary

(heavy weight) process)
• Switching between threads is much lower overhead than switching between separate processes.

- only need to reload pc and registers. Only need to reload user registers, not change entire PCB
(e.g. acc info, etc). D
◦ In some cases, thread switching can be done by code in user-level library so no OS call is

required. This is much lower overhead
▪ Note that if thread switching is done by user, then OS doesn't know. Therefore, if one

thread is blocked by OS all are blocked – process creates its own threads – user state.
Also OS will allocate time per task, even though it may have many threads.

◦ A thread can create child threads of its own.
◦ Note that since memory is shared, there is low overhead sharing, but not protection – one

thread writes something all threads see it, one thread messesup – crashes
• Why use threads

◦ On uniprocessor, may provide more convenient model for programming normal sequential
program (Does not inherently provide higher efficiency).

◦ On shared memory Multiprocessor, may provide parallelism, since diff. Threads can run on
different processors in parallel.
▪ Note that OS must do scheduling for multiprocessors

• Lower overhead (task switching, memory sharing) than separate parallel (heavyweight
processes.

• Process Syncronization with Condition Variables
• Processor or thread can cooperate using wait and signal along with condition variables. -
• The operation x.wait means that the process invoking it waits until some other process invokes

x.signal. - do a wait on x then somebody releases u when someone does x.signal
• The x.signal operation resumes exactly one suspended process. If no process is suspended, then

x.signal has no effect. - similar to v operation – v increment, signal is lost.
• x.signal and x.wait are used to control synchronization with Monitors, which is a special type of

critical region. Only one process can be executing in a monitor at a time - idea monitor is a
chunk of code and only one can process in a monitor, a mutex, execute , leave

Read paper on monitors

• There is one binary semaphore associated with each monitor, mut exclusion is implicit: P on
entry to any routine, V on exit.

• Monitors are a higher-level concept than P and V. They are easier and safer to use.
• Monitors are a synchornization mechanism combining threee features:

◦ Shared data
◦ Operations on the data
◦ Synchronization,scheduling

They are especially convenient for synchonization involving lots of state.
• Monitors need more facilities than just mutual exclusion, Need some way to wait

◦ Busy-wait inside monitor?
◦ Put process to sleep inside monitor?

• Condition variables: things to wait on – makes sense when you go through it

◦ Wait(condition): release monitor lock, put process to sleep. When process is allowed to
wake up again, re-acquire monitor lock immediately

◦ Signal (condition): wake up (FIFO) , o/w do nothing
◦ Broadcast (condition): wake up all

Several variations on wait/signal mechanism.
On signal, signaller keeps monitor lock
Once on wait queue, check again and prepared to sleep again.

Four procedures: checkRead, checkWrite, doneRead, doneWrite, conditions OKToRead, OKToWrite –
This is all part of one monitor.

