Kumar Garapaty
CS 162 Notes for 2/9/2009
Last time talking about producers/consumers

Announcement: No discussion tomorrow — Nachos 7pm 306 soda

Readers and Writers Problem — standard problem, shared data — various processes reading and writing
it — obtain decent results

e Ashared database with readers and writers, writers can't overlap readers

o It is safe for any number of readers to access the database simultaneously, but each writer must
have exclusive access.

> Note write — read modify write
> must use semaphores
> Checking account

> Writers are actually readers too
Constraints

e Scheduling
> Writers can only proceed if there are no active readers or writers
> Readers can proceed if there are no active or waiting writers — use semaphore oktoread
To keep track of who's r/w — state variables
AR - active, WR- waiting, AW-active WW — waiting, AW is always 0 or 1

Initialization:
OkToRead = 0; OkToWrite = 0; Mutex = 1,
System starts empty, variables equal 0
Can argue not the most efficient scheduling, scheduling: writers get preference

Reader Process:
P(Mutex); - lock acces on shared variables
if (AW+WW) == 0) - if no writers in system, give permission to read, increments count of

{

reader

V(OkToRead);
AR = AR +1,;
}
else WR=WR + 1;
V(Mutex);
P(OKToRead);
--read the necessary data;
P(mutex); - lock variable
AR = Ar-1;- decrements active readers
if (AR ==0 && WW > 0)
{
V(OKToWrite);
AW = AW + 1,
WW = WW - 1;



}
V(Mutex);

Writer Process:
P(mutex); - locks things
if (AW + AR + WW)==0) — nothing in the system (do we need WW - no)
{
V(OKToWrite); - permission to write
AW = AW + 1; - increment active write
}
else WW = WW + 1; - wait to write
V(Mutex); - release mutex
P(OKToWrite) — permission get through this — if not hangs there
--write the necessary data
P(Mutex); - locks
AW = AW -1; - decrement active writer

if (WW>0)
{
V(OKToWrite); - let one of them go
AW = AW+1;
WW = WW-1;
else while (WR > 0) — keep going till all waiting readers are done
{
V(OkToRead)
AR + AR +1;
WR =WR -1;
¥

V(Mutex) — can exit
Another problem: Dining Philosophers Problem

Assume 5 philosophers (works for N). Out to dinner at Italian restaurant. Seated at circular table, with
one fork between each pair of philosophers. Philosophers need 2 forks to eat.

Algorithm for getting forks so that they can eat.

Assume solution must be:
e Symmetric — all philosophers use same algorithm
e Can't number the philosophers as part of the solution — all even get forks (can refer to them in
numbers)
o Efficient — more than one philosopher eats — as many to eat as possible
¢ No central control

Obvious solution
e a. pick up left fork
e Db. pick up right fork; wait if necessary
e C.eat



Fails, due to immediate deadlock — each philosopher ends up with one fork, waiting for right fork — not
an optimal solution

Second
e a. pick up left fork
e D.if available, pick up right fork, else,

> (bl) put down left fork
> b2 wait for right fork
> b3 pick up right fork

> b4 pcik up left fork; wait if necessary
e cC.eat

Assuming all move in same speed, Fails in opposite order — now each is waiting for left fork.

Solution
N+1 philosophers
semaphore mutex (init 1)
used for mutual exclusion
array H(O:N), init 'not hungry'
values 'not hungry, hungry, eating'
semaphore array prisem(0:N), init (0) (“Private semaphore”) - one for each philosopher, hangs up on if
philosophers pick up forks
procedure test(me): - test myself or test neighbors — looks both ways and | am hungry then set state to
eating
if H((left) != eating and H(me) = hungry
and H(right)- = eating do

begin
H(me) = eating
V(prisem(me))
end

cycle begin

think(philosopher me) — do when they are not eating
P(mutex) — hungry, locks state
H(me):= hungry — take forks
test(me) — looks to see if forks available, sets state to eating, permission to pick up forks
V(mutex)
P(prisem(me)) — forks are available, pick them up, only go to it when forks are availble
eat
P(mutex) — locks shared state
H(me):=not hungry — sets state hungry — put down forks
test(left) — test others
test(right)
V(mutex)- unlock state
end



muteX — none of them can change state

Solution is free of deadlock, but permits unbounded delay

It does not prevent starvation — neighbors are hungry and you are hungry sometimes — forks wont be
put down both times

Private semaphore — used to control the progress of each process, and a common semaphore is used to
allow for unambiguous inspection and modification of common state variables.

Threads —4.1 - 4.4 - text

Thread — lightweight process, is a type of process

Thread has its own pc, register set values, and stack

thread shares with 1 or more threads its code, data, and OS resources such as open files with
other threads — normal heavy process — has only 1

Task consists of the set of threads sharing code, data, etc, a task with one thread is an ordinary
(heavy weight) process)

Switching between threads is much lower overhead than switching between separate processes.
- only need to reload pc and registers. Only need to reload user registers, not change entire PCB
(e.g. acc info, etc). D

> In some cases, thread switching can be done by code in user-level library so no OS call is
required. This is much lower overhead

= Note that if thread switching is done by user, then OS doesn't know. Therefore, if one
thread is blocked by OS all are blocked — process creates its own threads — user state.
Also OS will allocate time per task, even though it may have many threads.

> Athread can create child threads of its own.

> Note that since memory is shared, there is low overhead sharing, but not protection — one
thread writes something all threads see it, one thread messesup — crashes
Why use threads

> On uniprocessor, may provide more convenient model for programming normal sequential
program (Does not inherently provide higher efficiency).

> On shared memory Multiprocessor, may provide parallelism, since diff. Threads can run on
different processors in parallel.

* Note that OS must do scheduling for multiprocessors
Lower overhead (task switching, memory sharing) than separate parallel (heavyweight
processes.

Process Syncronization with Condition Variables

Processor or thread can cooperate using wait and signal along with condition variables. -

The operation x.wait means that the process invoking it waits until some other process invokes
x.signal. - do a wait on x then somebody releases u when someone does x.signal

The x.signal operation resumes exactly one suspended process. If no process is suspended, then
x.signal has no effect. - similar to v operation — v increment, signal is lost.

x.signal and x.wait are used to control synchronization with Monitors, which is a special type of
critical region. Only one process can be executing in a monitor at a time - idea monitor is a
chunk of code and only one can process in a monitor, a mutex, execute , leave



Read paper on monitors

e There is one binary semaphore associated with each monitor, mut exclusion is implicit: P on
entry to any routine, V on exit.

e Monitors are a higher-level concept than P and V. They are easier and safer to use.
e Monitors are a synchornization mechanism combining threee features:

> Shared data
> QOperations on the data

> Synchronization,scheduling
They are especially convenient for synchonization involving lots of state.
¢ Monitors need more facilities than just mutual exclusion, Need some way to wait
> Busy-wait inside monitor?

> Put process to sleep inside monitor?

e Condition variables: things to wait on — makes sense when you go through it

> Wait(condition): release monitor lock, put process to sleep. When process is allowed to
wake up again, re-acquire monitor lock immediately

> Signal (condition): wake up (FIFO) , o/w do nothing
> Broadcast (condition): wake up all

Several variations on wait/signal mechanism.
On signal, signaller keeps monitor lock
Once on wait queue, check again and prepared to sleep again.

Four procedures: checkRead, checkWrite, doneRead, doneWrite, conditions OKToRead, OKToWrite —
This is all part of one monitor.



