
Theron Ji
Wednesday 2/11

Monitors
6.7 in text & Hoare article

Readers and writers problem redone with monitors:
- Monitored procedures: checkRead, checkWrite, doneRead, doneWrite
- Conditions: OKToRead, OKToWrite
- AW = active writers, WW = waiting writers, AR = active readers, WR = waiting

readers

checkRead():
if ((AW+WW))>0) // If there are people writing

WR = WR + 1 // Put yourself on waiting list
Wait(OKToRead) // Wait until it’s OK
WR = WR -1 // Remove yourself from waiting list

AR=AR+1 // Put yourself on active reading list
Read // Read!

doneRead():
AR=AR-1 // Remove yourself from active reading list
if (AR==0 & WW>0) signal(OKToWrite) // If there are no more readers, let writers go

checkWrite():
while((AW+AR)>0) // If there is someone current writing/reading

WW = WW+1 // Add yourself to waiting list
Wait(OKToWrite) // Wait until it’s OK to write
WW = WW-1 // Remove yourself from waiting list

AW = AW + 1 // Add yourself to active list
WRITE // Write!

doneWrite():
AW = AW – 1 // Remove yourself from active list
if (WW>0) signal(OKToWrite) // If there are more writers, let them go first
else broadcast(OKToRead) // Else let all the readers go

 Very similar to P and V with semaphores

Producers and Consumers Problem w/ Monitors (from Hoare):
bounded buffer: monitor

 begin buffer: array 0..N-1 of portion

 last pointer:0..N-1;

 count:0..N;

 nonempty, nonfull: condition;

 procedure append(x; portion);

 begin if count==N then nonfull.wait;

 buffer[lastpointer] =x;

 last pointer = (lastpointer + 1) mod N

 count = count+1;

 nonempty.signal

 end append;

 procedure remove (result x; portion);

 begin if count==0 then nonempty.wait;

 x=buffer[(lastpointer - count) mod N];

 count=count-1;

 nonfull.signal;

 end remove

 count=0;

 lastpointer=0;

 end bounded buffer

Disk Head Scheduler:
- Like an elevator scheduler
- Sorted by levels

Terminology:
1. procedure request – called before issuing request to move head to disk
2. procedure release – call after cylinder is finished
3. headpos – current location of head
4. busy – whether disk is busy
5. sweep – direction of head movement, up or down

Variables:
1. diskhead: Monitor
2. headpos: Cylinder
3. direction: up/down
4. busy: Boolean
5. upsweep/downsweep: condition

 procedure request(dest: cylinder);
 begin if busy then

 [if {((headpos < dest) or [headpos == dest & direction==up])
 then upsweep.wait(dest)
 else downsweep.wait(dest)}];
 else [busy=true; headpos=dest;]
 end request;
 procedure release;
 begin busy=false;
 if direction==up then
 if {upsweep.queue then upsweep.signal
 else {direction=down; downsweep.signal}}
 else if downsweep.queue then downsweep.signal
 else {direction=up; upsweep.signal}
 end release;

 headpos=0;
 direction=up;
 busy=false;
 end diskhead

- Monitors is a style of programming where synchronization doesn’t get mixed with
other code; separate from other monitors

Unix implementation (optional information):
- Has generalized semaphores
- Each semaphore has queue of processes suspended on it
- The semop sys call takes a list of semaphore ops and does them one at a time
- If semop is positive, semaphore is incremented and all processes awaken
- If semop is zero, and semaphore value is 0, then continue, else block it
- If semop is negative and less than the semaphore value, they are added
- Lastly, if semop is negative and greater than the semaphore value, its suspended
Unix also uses signals, which are software interrupts processes send each other
- About 20 defined signals (interrupt, quit, illegal instruction, etc.)

Semaphore Implementation
6.5 in text

- No hardware implementation of P & V because too complicated, hard, and long
- One solution: disable interrupts

- Simulates atomic, because dispatcher “can’t” take control
- Not completely true, because can’t disable some interrupts or any traps

- Almost all processors have an atomic read-modify-write instruction
- E.g. Atomic increment value in memory, and then load and decrement value in

memory
- Operations are to increment to value in memory, load incremented value
- Decrement value in memory

- 1st method:
- Busy waiting loop:

- Init: A=0
- Loop: increment A in memory, load A
- If A != 1, then decrement decrement A in memory, go to loop
- *Critical Section*
- Decrement memory location A

- Doesn’t work! Due to indefinite postponement
- For N processes (N > 2), it oscillates between 2 to N

- 2nd method: Swap
- Operation is: swap(local(i).lock) – interchanges values of two variables

(special atomic operation w/ 2 loads and 1 store)
- Busy waiting loop:

- Init: lock = false
- Local(i) = true
- Repeat swap(local(i).lock) until local(i)==false
- Critical section here
- local(i) == true
- lock = false

- Not guaranteed to work in a certain amount of time; factor of randomness
- 3rd method: Test and set

- Set value to true, but return old value; use ordinary write to set back to false;
lock is locked if its true

- Tset(local(i), lock): local(i) = lock; lock = true
- Busy waiting loop:

- Init lock = false
- Repeat(Tset(local(i), lock) until local(i) == false
- Critical section
- Lock = false

- Works!

Will use test and set to implement semaphore:

P(S)
Disable interrupts
Local(i):=T
Repeat(Tset(local(i), S.lock)) until local(i) == false
If S>0, then S:=S-1, S.Lock = enable interrupts
Return
Add process to S.Q
S.Lock = false

Enable interrupts
Call dispatcher

V(S)
Disable interrupts
Local(i) = T
Repeat (Tset(local(i),S.Lock) until local(i)==false
If (S.Q is empty) S = S + 1
Else remove process from S.Q, wake it up
S.Lock = false
Enable interrupts

Why enable interrupts?
- If a process is in the middle of P or V, it can prevent you from unlocking it for a bit,

and efficiency goes down
- Time issue

Technically can do with solution of “too much milk” problem instead of atomic
operations, but why so serious complicated?

