Announcements:
e Papers posted online: not required reading, just for reference
o File posted online called "introstuff": material relevant to first lectures in course;
includes obituaries for people from 1960s, etc.
e IMPORTANT: Midterm is 2 weeks from today (4/15)

I/0 devices (continued):

Digital Video Disk (DVD)
e same size as CD, but dots are closer together; higher dot densities readable with
blue or green (versus red) lasers
capacity: 4.5GB, 9GB, 18GB (approx)
can be one- or two-sided, and have 1 or 2 layers
thickness 0.6mmx2, beam spot size 1.32um, light 650nm
working distance 1.7mm, max transfer rate 10.08Mb/s

Blue Ray and HD Disks
e Sony led Blue Ray; Toshiba led HD
HD more compatible with CD, but has less capacity
Blue Ray: 25 GB/layer
HD Disk: 15 GB/layer
thickness: 0.1mm+1.1mm, beam spot size 0.58um, light 405nm; violet light
access efficiency: on disk typically takes 5-15 ms overhead before transfer begins
CPU overhead: ~3K-25K instructions
seek time: avg 2-12ms, range 0ms-30ms (random seek avgs only 1/3 of disk
surface; typical seek much shorter because of contiguous data)
e rotational latency: avg 2-8.33ms

- Most software that deals with disks and other I/O devices attempt to process information
in large blocks (usually sequentially)

Device Interconnection:

Design from the 60s:

e nothing in system very smart; everything in system very expensive

e CPU had channel program, channel program had I/O operation that talked to
storage controller, etc. (see immediately below)

|[CPU| => |Channel| => |Storage Controller] => |String Controller| => |Device|

e storage controller is relatively smart

e string controller is relatively stupid, mostly does analog-to-digital signal processing

¢ logic is expensive and CPU can't talk to lots of devices, so want to share as many
levels as possible

e each device is both big and expensive
(Problem) One data path: lots of inefficiency; i.e. if string controller is busy, device
must wait

e (Solution?) Create multiple data paths: make more channels that can talk to
multiple storage controllers, and more storage controllers that can talk to multiple
string controllers, etc.

Storage (NAS and SAN):
o NAS (Network Attached Storage): storage attached to local area network (i.e.
ethernet); provides "file" interface; low-to-midrange product



e SAN (Storage Area Network): possibly separate network containing storage; "block
level" interface; mid-to-highrange end product

e Storage Networking Industry Association (SNIA): works on standards for NAS and
SAN so they can interoperate and attach to multiple types of systems

e storage service providers: storage provided by third party; often connects over
internet or via dedicated cable to provider; this is expensive

Diagrams and pictures: most diagrams are posted online
[diagram of DVD burner]

- multiple layers

- DVD-R and DVD-RW have slight differences between layers

[diagrams for 2-layer disks]

- laser beam focuses on different depth

- dips in DVD much smaller and denser than in CD

- recordable 2-layer disk is tricky, since focus needs to be very precise on one layer

- different focus for CD, DVD, and DVR/BlueRay

- not all DVD recorders are the same: can be benchmarked by the time it takes to burn an
image, back-up, etc.

[diagrams for magneto-optic recording]

- recording: heat up magnetic field to switch bits

- reading: laser polarizes light and causes Farraday rotation of light; this can be detected
by a polarized filter

- people used to believe that MO (magneto-optic) products would become popular, but then
HDD devices developed to have greater density

[diagram of mainframe system]

- CPU connected to channels; channels talk to storage controllers which talk to string
controllers/switches

- mainframe different from Unix/Windows servers

- software reliable and powerful; been around for a while and used throughout the world

- banks and airlines all run mainframe systems for reliability and redundancy; lots of back-
ups

[diagrams of network connections between storage devices]

- SANs are despited as "clouds" with invisible interconnections between servers and disks
- cloud computing: means everything is very fuzzy and indistinct

- SCSI over IP: instead of talking to device, server talks to network; storage at far-end of
network, with packets sent between the storage device and server

[diagrams/pictures of storage devices and mainframes]
[diagrams/pictures of printers]
[diagrams/pictures of tape drives]

File Structure, I/0 Operation:

- from OS point of view, the file consists of a bunch of blocks stored on device

- from programmer point of view, the programmer may see a different interface; the file
system doesn't care, since it just moves bytes around

- file properties (depending on OS): name(s), file protection, time of creation, time of last
use, time of last modification, length count, number of pointers to it, owner, etc.



Modern file and I/O systems must address four general problems:
(1) Disk management:
o efficient use of disk space
o fast access to files: file structures and device optimization
e user has hardware independent view of disk (OS generally does too)
(2) Naming: how do users refer to files?
e concerns directories, links, etc.
(3) Protection: all users are not equal
e want to protect users from each other
e want to have files from various users on the same disk
e want to permit controlled sharing
(4) Reliability
e information must last safely for long periods of time

Disk Management:
e How should the blocks of hte file be placed on the disk?
e How should the map to find and access the blocks look?
o File descriptor: data structure that gives file attributes and contains the map which
indicates where the blocks of a file are
e every file is associated with a file descriptor; these are stored on disk along with the
files (when the files are not open)

Some system, user, and file characteristics:
e most files are small: in Unix, most files are very small; lots of files with only a few
commands in them
o however, some files are huge: the majority of the space on a disk consists of large
files
many of the I/0O operations are made to large files
most I/Os are reads
most I/Os are sequential
Conclusion: per-file cost must be low, but large files must have good performance

File Block Layout and Access:
e Three ways to allocation files: contiguous, linked, or indexed/tree-structured
e Note: this is standard data structures stuff, but on the disk

Contiguous Allocation:

o allocate file in a contiguous set of blocks or tracks

o keep a free list of unused parts of the disk

e when creating a file, make the user specify its length and allocate all the space at

once

o file descriptor contains location and size

e Advantages:
> easy access for both sequential and random accesses
> low overhead
> simple
o few seeks
- very good performance for sequential access

e Disadvantages:
- horrible fragmentation will make large files impossible
> hard to predict needs at file creation time
> may over-allocate



e can improve the scheme by permitting files to be allocated in extents: i.e. ask for
contiguous blocks, but if it's not enough then get another contiguous block; extra
space on last extent can be released after file is written

e IBM 0OS/360 permits up to 16 extents

Linked files:
¢ link the blocks of a file together as a linked list
file descriptor contains first pointer to first block; each block keeps pointer to next
block
Advantages:
> files can be extended
- no external fragmentation problem
o sequential access is easy: just chase links
Disadvantages:
> random access requires sequential access through list
> lots of seeking even in sequential access
o some overhead in blocks for link
i.e. TOPS-10 and Alto (sort of)

(Simple) Indexed files:
e simplest approach: keep an array of block pointers for each file
file maximum length must be declared at creation
allocate an array to hold pointers to all the blocks, but don't allocate the blocks
fill in pointers dynamically in a free list
Advantages:
- not as much space wasted by overpredicting
> both sequential and random accesses are easy
- only waste space in index
e Disadvantages:
> lots of seeks
> index array may be large and may require large file descriptor

Multi-level indexed files (Unix solution, version 4.4):
e in general, this refers to any sort of multi-level structure; the following describes
Berkeley 4.3BSD Unix
o file descriptor contains 15 block points: first 12 pointers point to data blocks; next
3 to indirect, doubly-indirect, then triply-indirect blocks (256 pointers in each
indirect block)
maximum file length is fixed, but large
descriptor space isn't allocated until needed
e Advantages:
> simple; easy to implement
> incremental expansion
> easy access to smale files
> good random access to to blocks
- easy to read and write blocks in middle of file
> easy to append to file
- good for small files; just add indirect blocks for large files
e Disadvantages:
> indirect mechanism doesn't provide very efficient access to large files: 3
descriptor operations for each real operation (when "opening" a file, can
keep the first level or two of the file descriptor around, so it doesn't need to
read each time)
- file generally isn't allocated contiguously; have to seek between blocks



Block allocation:
o if all blocks are the same size, and use a bit-map solution:
> one bit per disk block
> cache parts of bit map in memory; select block at random (or not) from
bitmap
o if blocks are variable size, can use free list:
> requires free storage area management; fragmentation and compaction
> in Unix, blocks are grouped for efficiency: each block on the free list
contains pointers to many free blocks, plus a pointer to the next list block,
so not many references are involved in allocation or deallocation
- block-by-block organization of free list means that file data gets spread
around on the disk
e more efficient solution for variable-size block allocation:
> used in DEMOS system built at Los Alamos
- allocate groups of sequential blocks; use multi-level index scheme, but each
pointer is to a sequence of blocks
- allocation tries to pick the next block, or at least another block on the same
track or cylinder; this minimizes rotational seek time
- if a pattern of sequential writing is detected, then a bunch of blocks are
grabbed at a time (then released if unused)
- part of the disk is always kept unallocated (Unix does this now), so there's a
high probability a sequential block can be found to allocate

I/0 Optimization:

Block size optimization:

e Small blocks:
- small I/O buffers (used for reads and writes)
o quickly transferred
> require more transfers for a fixed amount of data
> high overhead on disk; wasted bytes for every disk block (inter-record gaps,

header bytes, etc)

> more entries in the file descriptor to point to blocks
> less internal fragmentation
o if random allocation, more seeks

o optimal block sizes tend to range from 2K to 8K bytes; this size is increasing with

improvements to technology



