
Announcements:
• Papers posted online: not required reading, just for reference
• File posted online called "introstuff": material relevant to first lectures in course;

includes obituaries for people from 1960s, etc.
• IMPORTANT: Midterm is 2 weeks from today (4/15)

I/O devices (continued):

Digital Video Disk (DVD)
• same size as CD, but dots are closer together; higher dot densities readable with

blue or green (versus red) lasers
• capacity: 4.5GB, 9GB, 18GB (approx)
• can be one- or two-sided, and have 1 or 2 layers
• thickness 0.6mmx2, beam spot size 1.32um, light 650nm
• working distance 1.7mm, max transfer rate 10.08Mb/s

Blue Ray and HD Disks
• Sony led Blue Ray; Toshiba led HD
• HD more compatible with CD, but has less capacity
• Blue Ray: 25 GB/layer
• HD Disk: 15 GB/layer
• thickness: 0.1mm+1.1mm, beam spot size 0.58um, light 405nm; violet light
• access efficiency: on disk typically takes 5-15 ms overhead before transfer begins
• CPU overhead: ~3K-25K instructions
• seek time: avg 2-12ms, range 0ms-30ms (random seek avgs only 1/3 of disk

surface; typical seek much shorter because of contiguous data)
• rotational latency: avg 2-8.33ms

- Most software that deals with disks and other I/O devices attempt to process information
in large blocks (usually sequentially)

Device Interconnection:

Design from the 60s:
• nothing in system very smart; everything in system very expensive
• CPU had channel program, channel program had I/O operation that talked to

storage controller, etc. (see immediately below)
|CPU| => |Channel| => |Storage Controller| => |String Controller| => |Device|
• storage controller is relatively smart
• string controller is relatively stupid, mostly does analog-to-digital signal processing
• logic is expensive and CPU can't talk to lots of devices, so want to share as many

levels as possible
• each device is both big and expensive
• (Problem) One data path: lots of inefficiency; i.e. if string controller is busy, device

must wait
• (Solution?) Create multiple data paths: make more channels that can talk to

multiple storage controllers, and more storage controllers that can talk to multiple
string controllers, etc.

Storage (NAS and SAN):
• NAS (Network Attached Storage): storage attached to local area network (i.e.

ethernet); provides "file" interface; low-to-midrange product

• SAN (Storage Area Network): possibly separate network containing storage; "block
level" interface; mid-to-highrange end product

• Storage Networking Industry Association (SNIA): works on standards for NAS and
SAN so they can interoperate and attach to multiple types of systems

• storage service providers: storage provided by third party; often connects over
internet or via dedicated cable to provider; this is expensive

Diagrams and pictures: most diagrams are posted online
[diagram of DVD burner]
- multiple layers
- DVD-R and DVD-RW have slight differences between layers

[diagrams for 2-layer disks]
- laser beam focuses on different depth
- dips in DVD much smaller and denser than in CD
- recordable 2-layer disk is tricky, since focus needs to be very precise on one layer
- different focus for CD, DVD, and DVR/BlueRay
- not all DVD recorders are the same: can be benchmarked by the time it takes to burn an
image, back-up, etc.

[diagrams for magneto-optic recording]
- recording: heat up magnetic field to switch bits
- reading: laser polarizes light and causes Farraday rotation of light; this can be detected
by a polarized filter
- people used to believe that MO (magneto-optic) products would become popular, but then
HDD devices developed to have greater density

[diagram of mainframe system]
- CPU connected to channels; channels talk to storage controllers which talk to string
controllers/switches
- mainframe different from Unix/Windows servers
- software reliable and powerful; been around for a while and used throughout the world
- banks and airlines all run mainframe systems for reliability and redundancy; lots of back-
ups

[diagrams of network connections between storage devices]
- SANs are despited as "clouds" with invisible interconnections between servers and disks
- cloud computing: means everything is very fuzzy and indistinct
- SCSI over IP: instead of talking to device, server talks to network; storage at far-end of
network, with packets sent between the storage device and server

[diagrams/pictures of storage devices and mainframes]
[diagrams/pictures of printers]
[diagrams/pictures of tape drives]

File Structure, I/O Operation:

- from OS point of view, the file consists of a bunch of blocks stored on device
- from programmer point of view, the programmer may see a different interface; the file
system doesn't care, since it just moves bytes around
- file properties (depending on OS): name(s), file protection, time of creation, time of last
use, time of last modification, length count, number of pointers to it, owner, etc.

Modern file and I/O systems must address four general problems:
(1) Disk management:

• efficient use of disk space
• fast access to files: file structures and device optimization
• user has hardware independent view of disk (OS generally does too)

(2) Naming: how do users refer to files?
• concerns directories, links, etc.

(3) Protection: all users are not equal
• want to protect users from each other
• want to have files from various users on the same disk
• want to permit controlled sharing

(4) Reliability
• information must last safely for long periods of time

Disk Management:
• How should the blocks of hte file be placed on the disk?
• How should the map to find and access the blocks look?
• File descriptor: data structure that gives file attributes and contains the map which

indicates where the blocks of a file are
• every file is associated with a file descriptor; these are stored on disk along with the

files (when the files are not open)

Some system, user, and file characteristics:
• most files are small: in Unix, most files are very small; lots of files with only a few

commands in them
• however, some files are huge: the majority of the space on a disk consists of large

files
• many of the I/O operations are made to large files
• most I/Os are reads
• most I/Os are sequential
• Conclusion: per-file cost must be low, but large files must have good performance

File Block Layout and Access:
• Three ways to allocation files: contiguous, linked, or indexed/tree-structured
• Note: this is standard data structures stuff, but on the disk

Contiguous Allocation:
• allocate file in a contiguous set of blocks or tracks
• keep a free list of unused parts of the disk
• when creating a file, make the user specify its length and allocate all the space at

once
• file descriptor contains location and size
• Advantages:

◦ easy access for both sequential and random accesses
◦ low overhead
◦ simple
◦ few seeks
◦ very good performance for sequential access

• Disadvantages:
◦ horrible fragmentation will make large files impossible
◦ hard to predict needs at file creation time
◦ may over-allocate

• can improve the scheme by permitting files to be allocated in extents: i.e. ask for
contiguous blocks, but if it's not enough then get another contiguous block; extra
space on last extent can be released after file is written

• IBM OS/360 permits up to 16 extents

Linked files:
• link the blocks of a file together as a linked list
• file descriptor contains first pointer to first block; each block keeps pointer to next

block
• Advantages:

◦ files can be extended
◦ no external fragmentation problem
◦ sequential access is easy: just chase links

• Disadvantages:
◦ random access requires sequential access through list
◦ lots of seeking even in sequential access
◦ some overhead in blocks for link

• i.e. TOPS-10 and Alto (sort of)

(Simple) Indexed files:
• simplest approach: keep an array of block pointers for each file
• file maximum length must be declared at creation
• allocate an array to hold pointers to all the blocks, but don't allocate the blocks
• fill in pointers dynamically in a free list
• Advantages:

◦ not as much space wasted by overpredicting
◦ both sequential and random accesses are easy
◦ only waste space in index

• Disadvantages:
◦ lots of seeks
◦ index array may be large and may require large file descriptor

Multi-level indexed files (Unix solution, version 4.4):
• in general, this refers to any sort of multi-level structure; the following describes

Berkeley 4.3BSD Unix
• file descriptor contains 15 block points: first 12 pointers point to data blocks; next

3 to indirect, doubly-indirect, then triply-indirect blocks (256 pointers in each
indirect block)

• maximum file length is fixed, but large
• descriptor space isn't allocated until needed
• Advantages:

◦ simple; easy to implement
◦ incremental expansion
◦ easy access to smale files
◦ good random access to to blocks
◦ easy to read and write blocks in middle of file
◦ easy to append to file
◦ good for small files; just add indirect blocks for large files

• Disadvantages:
◦ indirect mechanism doesn't provide very efficient access to large files: 3

descriptor operations for each real operation (when "opening" a file, can
keep the first level or two of the file descriptor around, so it doesn't need to
read each time)

◦ file generally isn't allocated contiguously; have to seek between blocks

Block allocation:
• if all blocks are the same size, and use a bit-map solution:

◦ one bit per disk block
◦ cache parts of bit map in memory; select block at random (or not) from

bitmap
• if blocks are variable size, can use free list:

◦ requires free storage area management; fragmentation and compaction
◦ in Unix, blocks are grouped for efficiency: each block on the free list

contains pointers to many free blocks, plus a pointer to the next list block,
so not many references are involved in allocation or deallocation

◦ block-by-block organization of free list means that file data gets spread
around on the disk

• more efficient solution for variable-size block allocation:
◦ used in DEMOS system built at Los Alamos
◦ allocate groups of sequential blocks; use multi-level index scheme, but each

pointer is to a sequence of blocks
◦ allocation tries to pick the next block, or at least another block on the same

track or cylinder; this minimizes rotational seek time
◦ if a pattern of sequential writing is detected, then a bunch of blocks are

grabbed at a time (then released if unused)
◦ part of the disk is always kept unallocated (Unix does this now), so there's a

high probability a sequential block can be found to allocate

I/O Optimization:

Block size optimization:
• Small blocks:

◦ small I/O buffers (used for reads and writes)
◦ quickly transferred
◦ require more transfers for a fixed amount of data
◦ high overhead on disk; wasted bytes for every disk block (inter-record gaps,

header bytes, etc)
◦ more entries in the file descriptor to point to blocks
◦ less internal fragmentation
◦ if random allocation, more seeks

• optimal block sizes tend to range from 2K to 8K bytes; this size is increasing with
improvements to technology

