4/20/2009 – Upinder Malhi(cs162-at) and Edward Lin (cs162-eu)

Protection and Security - Jingtaow Wang

- Protection: To prevent accidental or intentional misuse of a system while permitting controlled sharing.
- Security: Use of protection mechanisms to prevent misuse of resources
 - o Misuse defined with respect to policy
- Accidental and Intentional Misuse
 - o Example: Program mistakenly overwrites the file used by the system shell. Nobody else can log in.
- Malicious Abuse
 - o Example: Some high school brat who can't get a a date, so instead he transfers \$3 billion from B to A.
- Three types of effects we are concerned with
 - Unauthorized information modification
 - Unauthorized denial of use
 - o Unauthorized information release
- Other Protection Problems hard to address from O.S.'s perspective
 - o Fake timesheets for paychecks.
 - o Repeat button printer to print extra paychecks.
- Functional Levels of Information Protection
 - Unprotected System
 - o All or nothing system
 - Controlled sharing
 - o User programmed sharing controllers
 - Users want to put complex restrictions on use, such as time of day, or concurrence of another user.
- Design principles for protection mechanisms
 - o Keep the design as simple and small as possible
 - o Fail safe defaults
 - o Complete mediation
 - Open design
 - o Separation of privilege
 - Least privilege
 - o Least common mechanism
 - Psychologically acceptability
- Three pieces to Security
 - o Authentication Who the user actually is
 - O Authorization Who is allowed to do what
 - o Enforcement Make sure people do only what they are supposed to do
- Authentication: Identifying Users
 - o Q. How to identify users to system?
 - Passwords: Shared secret between two parties
 - Don't store the password directly. Store the hash of the password. Use salt to prevent dictionary attacks. Salts add

- random strings to the end of the password and hash that, instead of the original password.
- Ways of Compromising Passwords: Password Guessing(Often people use obvious information like birthday, favorite color, girlfriends's name, etc), Dictionary Attack (Work way through dictionary and compare encrypted version of dictionary words with entries in /etc/passwd) and Dumpters Diving (Find pieces of paper with passwords written on them)
- Use changing passwords on keyboard logging attacks on public computer.
- Smart Cards: Electronics embedded in card capable of providing long passwords or satisfying challenges.
- Biometrics: use of one or more intrinsic physical or behavioral traits to identify someone

• Counter-actions

- o Passwords should not be stored in a directly-readable form
 - One-way function like a hash
- o Password testing should be slow
 - Limit the number of tests
- o Passwords should be relatively long and obscure
 - Paradox: short passwords are easy to crack, long passwords are easily forgotten and usually written down
- Must protect the authorizer
 - The program that checks whether the password matches must be incorruptible

Password Attacks

- o Recover 80% of the password just by hearing the sound of the keystrokes
- You need to also protect your environment
- Using Badge or Key for Authentication
 - o smart card is not usually a good design choice
 - pain to carry
 - key paradox: must be cheap to make, hard to duplicate
- Authorization:
- Access Control Matrix
 - o each row represents a User, process, etc
 - o each column is a file, devices
 - o problem of the Access Control Matrix
 - if there are too many resources or files or users/processes, the matrix would become too big
 - it is not practical to implement this matrix in your operating system
- access control list
 - o vertically split the matrix into several lists
 - o most modern operating systems use this design for file system
 - o really easy to implement
 - o very easy to answer who has this file
 - o very easy to revoke access

- o it is hard to answer the question: which files can be accessed by user A
- o how can you reduce number of entries in access control list?
 - you assign users to groups
- o overhead of checking an access list is "high"
 - if access list is in memory, takes 50-100 instructions
 - if stored on disk, it takes considerable time

Capabillities

- o horizontal strips of the matrix
- o very easy to answer which files this user has access to
- o used by
 - Intel 423
 - cambridge CAP system
 - IBM system/38
- o Example: page tables

Multics

- o 8 levels (rings of protection)
- o For each file and segment, there is a level associated with read, write, execute, and call
- O Protection levels are associated with segments and can be found in the segment tables
 - Accessed with little/no extra overhead
- o Intel x86 architecture supports the same thing, but with 4 levels
- psychological acceptability
 - o random strings are good passwords but not good for humans
- access enforcement
 - o hackers can control the system with a stack overflow to exploit a bug in a complex security system
 - o you need to the system to be flexible
 - to follow a lot of control rules
 - o you need the system to be reliable
 - simple systems are more reliable