
 Page 1/12

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2012 Anthony D. Joseph and Ion Stoica

Midterm Exam Solutions
March 7, 2012

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 20

2 20

3 15

4 20

5 15

6 10

TOTAL 100

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 2/12

1. (20 points total) Short answer questions.

a. (8 points) True/False and Why? CIRCLE YOUR ANSWER.
i) A lightweight process with one thread is equivalent to a heavyweight process.

TRUE FALSE
Why?
TRUE. A heavyweight process has only one thread. The correct answer
was worth 2 points and the justification was worth an additional 2 points.

ii) Demand paging requires the programmer to take specific action to force the
operating system to load a particular virtual memory page.

TRUE FALSE
Why?
FALSE. The OS automatically loads pages from disk when necessary. The
correct answer was worth 2 points and the justification was worth an
additional 2 points.

b. (8 points) Two-level Page Tables:
i) Give a two to three sentence description of a two-level page table.

A two-level page table uses two levels of page tables where a pagetable
pointer points to the top-level table. Entries in the top-level table point to the
lower-level page tables. The lower level tables contain PTEs pointing to the
physical locations.

ii) Briefly (2 sentences) state one advantage AND one disadvantage of two-level

page tables.
Advantage: Can map sparse address spaces efficiently
Disadvantage: Requires an additional memory reference to translate virtual
to physical addresses.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 3/12

c. (4 points) List the four requirements for deadlock.
Mutual exclusion, non-preemptable resources, hold and wait, circular chain
of waiting.
Each requirement was worth 1 points.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 4/12

2. (20 points total) Consider the following two functions implementing a producer and

consumer by using monitors:
void send(item) {
 lock.acquire()
 enqueue(item);
 printf(“before signal()\n”);
 dataready.signal(&lock);
 printf(“after signal()\n”);
 lock.release();
}

item = get() {
 lock.acquire();
 while (queue.isEmpty()) {
 printf(“before wait()\n”);
 dataready.wait(&lock);
 printf(“after wait()\n”);
 }
 item = dequeue();
 lock.release();
}

a. (4 points) Use no more than three sentences to contrast Hoare and Mesa monitors.

With Hoare the signaler gives the CPU and the lock to the waiter; With Mesa the
signaler schedules the waiter, and then finishes.

o -1 if it was not clear that a thread in a Mesa monitor can hold the lock
indefinitely after signaling.

o -1 if the signaled/woken thread is put on a wait queue instead of the ready
queue.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 5/12

b. (5 points) Assume two threads T1 and T2, as follows:

 T1 T2
 send(item); item = get();

What are the possible outputs if the monitor uses the Hoare implementation?

 before signal
 after_signal

• We gave 2 points for the above solution.

 before wait
 before signal
 after wait
 after signal

• We gave 3 points for the above solution.
• -2 if there were more than two answers, but at least 1 point if “something” was

right.

c. (5 points) Repeat question (b) for a Mesa implementation of the monitor.

 before signal
 after_signal

• We gave 2 points for the above.

 before wait
 before signal
 after signal

 after wait

• We gave 3 points for the above.
• -2 if there were more than two answers, but at least 1 point if “something” was

right.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 6/12

d. (6 points) Now assume a third thread T3, i.e.,

 T1 T2 T3
 send(item); item = get(); send(item);

 What are the possible outputs if the monitor uses the Hoare implementation?
Please specify from which thread does an output come by specifying the thread id
in front of the output line, e.g., [T1] before signal or [T2] after
wait.

[T1] before signal
[T1] after signal
[T3] before signal
[T3] after signal

• 1 point for each of the above ones.

[T3] before signal
[T3] after signal
[T1] before signal
[T1] after signal

[T2] before wait
[T1] before signal
[T2] after wait
[T1] after signal
[T3] before signal
[T3] after signal

[T2] before wait
[T3] before signal
[T2] after wait
[T3] after signal
[T1] before signal
[T1] after signal

• 2 point for each of the above ones.
• --1 for each answer beyond four.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 7/12

3. (15 points) Design tradeoffs (15 points total):

You’ve been hired by Orange Computer to help design a new processor and Orange
Pro laptop. After choosing the display, case, and other components, you are left with
$460 to spend on the following components:

Item Latency Minimum Size Cost
TLB 10 ns 256 entries $0.10/entry

Main memory 180 ns 2 GB $10/GB
Magnetic Disk 8 ms (8M ns) 300 GB $0.10/GB

The page size is fixed at 64 KB. Assume you want to run up to 20 applications
simultaneously. Each application has an overall maximum size of 1 GB and a
working set size of 256 MB. TLB entries do not have Process Identifiers. Discuss
how you would divide the available funds across the various items to optimize
performance.

We start with the disk. Since the disk is the slowest component of the system, we
take the minimum size, 300 GB or $30, leaving us with $430. Since the TLB does
not contain process identifiers, we only need the minimum number of entries to
map the working set for a single process – 256 MB / 64 KB = 4,096 entries or
$409.60, leaving us with $21.40. With the remaining money, we could buy 2 GB.
However, since the maximum number of applications is 20 each with a working
set size of 256 MB, we should provide 5 GB of RAM ($50) to avoid paging, so we
should spend $380 on 3,800 entries. While this will cause TLB misses, it does not
make sense to increase the TLB any more, since that would require that we
decrease the memory size below the requirements for the applications; a situation
that will cause the system to start paging.

We awarded 3 points per choice, based upon the reasonableness of the choices.
We used the following table:

Item / Points 3 points 2 points 1 point 0 points
(a) TLB 3,800 entries > 3,800 < 3,800 < 256
(b) Memory 5 GB > 5 GB < 5 GB < 2 GB
(c) Disk 300 GB > 300GB, if using extra money for

disk instead of memory or TLB
> 300GB < 300GB

(d) We awarded another 3 points if the TLB answer was based upon an analysis
of a single applications’ working set size (i.e., since only mapping the working set
matters and the TLB does not include process identifiers).
(e) We awarded an additional three points based upon the overall reasonableness
of the answer. For example, a system with a small amount of paging would lose a
point, while a system with a significant amount of paging (e.g., only 2 GB of
memory), would lose two points.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 8/12

4. (20 points) Concurrency control: Consider the following pseudocode that aims to

implement a solution for the Dining Philosopher problem. Note that a philosopher can
use any chopstick.

// assume chopstick[i].status = FREE, for 1 <= i <= N
get_chopstick(boolean hold_one_chopstick) {
 lock.acquire();
 for (i = 1; i <= N; i++) {
 if (chopstick[i].status == FREE) {
 chopstick[i].status = BUSY;
 return i;
 }
 }
 lock.release();
 return -1;
}

release_chopstick(i) {
 if (i == -1) return;
 chopstick[i].status = FREE;
}

philosopher() {
 plate = FULL;
 while (plate == FULL) {
 chopstick1 = get_chopstick(FALSE);
 if (chopstick1 != -1) {
 chopstick2 = get_chopstick(TRUE);
 plate = EMPTY;
 release_chopstick(chopstick2);
 }
 release_chopstick(chopstick1);
 }
}

main() {
 for (i = 1; i <= N; i++) {
 thread_fork(philosopher());
 }
}

a. (2 points) Name an error in how synchronization primitives are used in
get_chopstick()

There is a missing lock.release() before return i.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 9/12

b. (10 points) After fixing the error in part (a), does the program work correctly? If it

does not, give a simple example to show how the program fails, and provide a fix.
If it does, use no more than three sentences to argue why it works.

Is not guaranteed to work. Every philosopher can get a chopstick, fail to get the
second one, release the chopstick they hold, and repeat!

• We gave 5 points for an example.

Add code to get_chopstick() to not give the last chopstick to a philosopher
if that philosopher doesn’t already own a chopstick. For example:

cnt = 0;
for (i = 1; i < N; i++) {
 if (chopstick[i].status == FREE) {
 cnt++;
 }
}
if (cnt == 1 && hold_one_chopstick == FALSE) {
 return -1;
}

• We subtracted 3 points if you did not give the above solution.
• We subtracted 1 point if you said it in words, but not give the code.
• We subtracted 1 point if your solution was to use mutex around the entire

body of philosopher(), as we considered this solution to do
“excessive locking”.

In addition, you need to check for chopstick2 in philosopher(), i.e.,
if (chopstick2 != -1) { plate = EMPTY; }

• We subtracted 2 point if you did not provide the above fix.

(We also need to protect the body of release_chopstick(),
by lock.acquire() and lock.release(). However, we did not
subtract any points for this.)

c. (8 points) Assume main() launches N+1 philosopher threads, instead of N. Will
the program work correctly given the changes you made for parts (a) and (b)? If it
does not, give a simple example to show how the program fails, and provide a fix.
If it does, use no more than three sentences to argue why it works.

No change needed, as the modified code in (b) will guarantee that the last chopstick
will always be picked by a philosopher that already has another chopstick.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 10/12

5. (15 points total) Scheduling.

a. (15 points) Consider the following processes, arrival times, and CPU processing
requirements:

Process Name Arrival Time Processing Time
1 0 3
2 1 5
3 3 2
4 9 2

For each scheduling algorithm, fill in the table with the process that is running on the
CPU (for timeslice-based algorithms, assume a 1 unit timeslice). For RR and SRTF,
assume that an arriving thread is run at the beginning of its arrival time, if the scheduling
policy allows it. The turnaround time is defined as the time a process takes to complete
after it arrives.

Time FIFO RR SRTF
0

1 1 1

1

1 2 1

2

1 1 1

3

2 3 3

4

2 2 3

5

2 1 2

6

2 3 2

7

2 2 2

8

3 2 2

9

3 4 2

10

4 2 4

11

4 4 4

Average
Turnaround
Time

3+7+7+3/ 4 =
5

6+10+4+3/ =
5.75

3+2+9+3/4=
4.25

Each column is worth 5 points: 3 for correctness of the schedule (we deducted
1/2/3 points if you made minor/intermediate/major mistakes), and 2 for the
average Turnaround time (1 point was deducted for minor errors).

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 11/12

6. (10 points total) Caching: Assume a computer system employing a cache, where the

access time to the main memory is 100 ns, and the access time to the cache is 20ns.

a. (2 points) Assume the cache hit rate is 95%. What is the average access time?

Average Access Time = Hit*cache_access_time + (1-Hit)*memory_access_time
= 0.95*20 ns + 0.05*100 ns = 24 ns

Alternatively, we accepted solutions that included the cache time in the memory
access time: AAT = 0.95 * 20 ns + 0.05 * (20 ns + 100 ns) = 25 ns.
We subtracted one point for minor errors.

b. (2 points) Assume the system implements virtual memory using a two-level page
table with no TLB, and assume the CPU loads a word X from main memory.
Assume the cache hit rate for the page entries as well as for the data in memory is
95%. What is the average time it takes to load X?

The Average Memory Access Time for X (AMAT) requires three memory accesses,
two for each page entry, and one for reading X: 3*24 = 72 ns. The alternate
solution from (a) yields 3*25 = 75 ns. We only accepted the alternate solution for
(b) if you derived the same value for (a).

c. (3 points) Assume the same setting as in point (b), but now assume that page
translation is cached in the TLB (the TLB hit rate is 98%), and the access time to
the TLB is 16 ns. What is the average access time to X?

AAT_X is TLB_hit *(TLB_access_time + AAT) + (1-TLB_hit) * (3 * AAT):
0.98*(16ns + 24ns) + 0.02*(72ns) = 0.98*40ns + 1.44ns = 40.64ns
Alternate AAT from (a): 0.98*(16ns + 25ns) + 0.02*(75ns) = 41.68ns

It was acceptable to include the TLB time in the TLB_miss calculation:
TLB_hit *(TLB _time + AMAT) + (1-TLB_hit) * (3 * AMAT +TLB_time).
0.98*(16ns + 24ns) + 0.02*(72ns + 16ns) = 0.98*40ns + 0.02*88ns = 40.96ns
Alternate AAT from (a): 0.98*(16ns + 25ns) + 0.02*(75ns +16ns) = 42ns
We subtracted one point for each minor error.

d. (3 points) Assume we increase the cache size. Is it possible that this increase to
lead to a decrease in the cache hit rate? Use no more than three sentences to
explain your answer.

Yes, using a FIFO replacement scheme could result in Belady’s anomaly. Also,

using the same hash function while increasing the cache size could cause more
collisions and reduce the hit rate. The correct answer was worth one point and the
justification was worth two points.

CS 162 Spring 2012 Midterm Exam March 7, 2012
Solutions

 Page 12/12

This page intentionally left blank

Do not write answers on this page

