
Discussion 1: Operating Systems

January 27, 2023

Contents

1 Fundamentals of Operating Systems 2
1.1 Concept Check . 3

2 Processes 4
2.1 Fork and Friends . 5
2.2 Signal Handling . 7

3 Pintos Lists 9

1

CS 162 Fall 2022 Discussion 1 Operating Systems

1 Fundamentals of Operating Systems

While not a well-defined concept, operating systems (OS) provide hardware abstractions (e.g. file systems,
processes) to software applications and manage hardware resources (e.g. memory, CPU). It can be seen as
a special layer of software that provides application software access to hardware resources. An OS serves its
purpose by taking on three roles.

Role Purpose
Referee Manage protection, isolation, and sharing of resources
Illusionist Provide clean, easy-to-use abstractions of physical resources
Glue Provide common services

Address Space

An address space is the set of accessible addresses and the state associated with them. For a 32-bit
processor, there are 232 ≈ 4 billion addresses.

The entire address space doesn’t necessarily represent real locations but rather potential spaces. A user
program reading or writing to an address may result in a regular memory access, exception or fault if not
allowed due to protection, I/O operation from a memory-mapped I/O device, or more. However, the kernel
can access the entire address space without limitations.

In most modern operating systems, programs operate with virtual memory. Instead of accessing a physical
memory directly, programs will request to access memory at a virtual memory address which is translated
into a physical memory address.

Process

A process is an execution environment with restricted rights. Each process has its own address space and
resources such as code, global data, and files.

Processes are protected from each other due to differing address spaces. If a bug were to corrupt a process,
it would generally avoid compromising the entire system due to the protections from the address space.

Dual Mode Operation

The underlying hardware that the OS interfaces with provides at least two modes: kernel and user. Kernel
mode, also known as supervisor or privileged mode, has the most privileges, meaning the kernel itself and
other parts of the OS operate in this mode. On the other hand, user mode prohibits certain operations.
This is where programs are normally executed. The restricted access is important in user mode to make sure
processes running in user mode cannot maliciously corrupt another process.

There are three main ways the system switches from a user mode to kernel mode (mode transfer). When
processes request a system service, this is known as a system call (syscall). While similar to a function call,
syscalls occur ”outside” the process, meaning it is executed in the kernel mode. Therefore, syscalls encompass
functionality that requires the privileges or abstractions of being in the kernel mode. Interrupts, sometimes
referred to as hardware interrupts, are external asynchronous events (e.g. timer, I/O) that trigger a mode
switch (from user mode to kernel mode). Traps, also known as exceptions or software interrupts, are
internal synchronous events (e.g. segmentation fault, divide by zero) that trigger a mode switch.

All three types of mode transfers are unprogrammed control transfers. Instead of the process specifying
the specific address like in a regular function call, the process specifies an index into the interrupt vector
table (IVT), which is a table that contains the address and properties of each interrupt handler. The
”interrupt” in IVT is used as a general term that’s not just limited to the interrupts mentioned in the
previous paragraph. The location of the IVT is stored in a designated processor register.

2

CS 162 Fall 2022 Discussion 1 Operating Systems

1.1 Concept Check

1. What is the importance of address translation?

Address translation is necessary for the idea of virtual memory which provides an isolation
abstraction. This gives the illusion that each process is the sole user of the address space. It
also provides protection between different processes since virtual addresses will not translate to
the same physical address, preventing processes from accessing and potentially corrupting each
other’s memory.

2. Similar to what’s done in the prologue at calling convention, what needs to happen before a mode
transfer occurs?

The processor’s state (e.g. registers) need to be saved in the thread control block (TCB) because
the kernel may overwrite the registers when it executes its own code.

3. How does the syscall handler protect the kernel from corrupt or malicious user code?

When executing a syscall, the user program specifies an index instead of the direct address of
the handler, meaning the user program cannot directly execute in kernel mode. The arguments
will be validated by the handler to make sure the user is not intending a malicious attack.
Moreover, the handler will copy over the arguments instead of using them from the user stack
directly. This is necessary because the user program could change the arguments after the
handler performs initial checks for malicious purposes (i.e. TOCTTOUa). After the syscall
finishes, the results are copied back in to user memory. The user process is not allowed to
access the results stored in kernel memory for security reasons.

ahttps://en.wikipedia.org/wiki/Time-of-check_to_time-of-use

3

https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use

CS 162 Fall 2022 Discussion 1 Operating Systems

2 Processes

Processes are instances of a running program with their own protected address spaces.

Process Control Block

An OS needs to run many programs, meaning there will be many processes. As a result, basic mechanisms
such as switching between user processes and the kernel, switching among user processes through the kernel,
and protecting the OS from user processes and among themselves need to be present in an operating system.

To accomplish this, the kernel represents each process with a process control block (PCB), a data
structure that keeps track of the various properties of a process including (but not limited to) status,
register state, process id (pid). The kernel scheduler allocates the CPU to different processes by maintaining
a data structure containing the aforementioned PCBs. Other resources, such as memory and I/O, need to
be managed and allocated as well, though not necessarily by the kernel scheduler.

Syscalls

Generally, an OS provides a library or API that implements process management syscalls. For Unix-based
operating systems, this usually resides as part of the C standard library (libc). As a result, full documentation
is available through the man pages.

void exit(int status) terminates the calling process with the exit code specified by status. Generally
speaking, exit code 0 means the code executed without any error, while non-zero exit codes indicate otherwise.
Rarely will you see a C program where main directly calls exit since the OS library will call exit for you
once main returns.

pid t fork(void) creates a new process by copying the current process. Typically, the process created
from fork is known as the child process, while the process calling fork is known as the parent process.
The parent and child processes are identical in many ways (e.g. address space) except for the PID. More
differences are listed on the man pages. The return type of fork is pid t, which is a signed integer. If the
return value is greater than 0, this means the current process is the parent process. On the other hand, if
the return value is 0, this means the current process is the child process. When the return value is -1, an
error has occurred; the current process remains (i.e. no new child process has been created).

A typical workflow you might see is

1 int main() {

2 pid_t fork_ret = fork();

3 if (fork_ret > 0) {

4 /* parent process logic */

5 } else if (fork_ret == 0) {

6 /* child process logic */

7 } else {

8 /* error handling */

9 }

10 }

fork simple.c

exec changes the program being run by the current process. A key distinction is that unlike fork, exec
does not create a new process. In Unix-based operating systems, exec is a family of functions with different
parameters, which is why a full method header is not given. For a full list, visit the man page.

pid t wait(int *wstatus) waits for a child process to finish. On success, it returns the PID of the
terminated child process, while returning -1 on an error. wstatus is used to store status information if not
NULL.

int kill(pid t pid, int sig) sends a signal, an interrupt-like notification, to another process. SIGINT

(ctrl-C), SIGTERM (kill on command line), and SIGSTOP (ctrl-Z) are all types of signals you may be familiar

4

CS 162 Fall 2022 Discussion 1 Operating Systems

with. When a process receives a signal, it has a defined behavior known as the signal handler. A custom
signal handler can be defined for most signals except for SIGKILL and SIGSTOP using sigaction.

2.1 Fork and Friends

1. How many new processes (not including the original process) are created when the following program
is run? Assume all fork calls succeed.

1 int main(void) {

2 for (int i = 0; i < 3; i++)

3 pid_t fork_ret = fork();

4 return 0;

5 }

fork loop.c

7. Newly forked processes will continue to execute the loop from wherever the parent process
left off.

2. What are the possible outputs when the following program is run?

1 int main(void) {

2 int stuff = 5;

3 pid_t fork_ret = fork();

4 printf("The last digit of pi is %d\n", stuff);

5 if (fork_ret == 0)

6 stuff = 6;

7 return 0;

8 }

fork stack.c

fork creates a new process, meaning the address spaces are identical but not shared. As a
result, changing stuff in the child process will have no effect on the value of stuff in the
parent process, regardless of the execution order of the two processes. This means the following
will be printed.

The last digit of pi is 5.

The last digit of pi is 5.

However, it is possible the fork doesn’t succeed as no such assumption was made. As a result,
the child process would never be created, only resulting in one statement being printed.

3. What are the possible outputs when the following program is run?

1 int main(void) {

2 int* stuff = malloc(sizeof(int));

3 *stuff = 5;

4 pid_t fork_ret = fork();

5 printf("The last digit of pi is %d\n", *stuff);

6 if (fork_ret == 0)

7 *stuff = 6;

8 return 0;

9 }

fork heap.c

5

CS 162 Fall 2022 Discussion 1 Operating Systems

The heap is part of the address space like the stack, meaning the heap will not be shared between
the parent and child process after a fork As a result, the possible outputs are the exact same
as the previous question: two lines of The last digit of pi is 5 if fork succeeds, one line
otherwise.

4. What are the possible outputs when the following program is run? Assume the child process has PID
162162.

1 int main(void) {

2 pid_t fork_ret = fork();

3 int exit;

4 if (fork_ret != 0)

5 wait(&exit)

6 printf("Hello World: %d\n", fork_ret);

7 return 0;

8 }

fork wait.c

The parent process will wait until the child process completes, meaning it will not print until
after the child process. As a result, the program will output

Hello World: 0

Hello World: 162162

Note that the order matters here.

If fork fails, then the program will print

Hello World: -1

since fork returns -1.

5. Does the following program print all numbers from 0 to 9 as well as the output of running ls? If not,
what is the minimal code change to accomplish this? Assume all syscalls succeed.

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 execv("/bin/ls", argv);

10 }

11 }

12 return 0;

13 }

fork exec.c

Currently, the program stops after printing 3, giving an output of

0

1

2

3

6

CS 162 Fall 2022 Discussion 1 Operating Systems

<output of ls>

When execv is run, the entire process image is overwritten, meaning the rest of the loop will
not execute. To achieve the desired output, we can fork and exec only in the child process to
make sure the parent process continues the loop.

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 pid_t fork_ret = fork();

10 if (fork_ret == 0)

11 execv("/bin/ls", argv);

12 }

13 }

14 return 0;

15 }

fork exec fixed.c

2.2 Signal Handling

The following are a list of standard POSIX signals.

Signal Value Action Comment

--

SIGHUP 1 Terminate Hangup detected on controlling terminal

or death of controlling process

SIGINT 2 Terminate Interrupt from keyboard (Ctrl - c)

SIGQUIT 3 Core Dump Quit from keyboard (Ctrl - \)

SIGILL 4 Core Dump Illegal Instruction

SIGABRT 6 Core Dump Abort signal from abort(3)

SIGFPE 8 Core Dump Floating point exception

SIGKILL 9 Terminate Kill signal

SIGSEGV 11 Core Dump Invalid memory reference

SIGPIPE 13 Terminate Broken pipe: write to pipe with no

readers

SIGALRM 14 Terminate Timer signal from alarm(2)

SIGTERM 15 Terminate Termination signal

SIGUSR1 30,10,16 Terminate User-defined signal 1

SIGUSR2 31,12,17 Terminate User-defined signal 2

SIGCHLD 20,17,18 Ignore Child stopped or terminated

SIGCONT 19,18,25 Continue Continue if stopped

SIGSTOP 17,19,23 Stop Stop process

SIGTSTP 18,20,24 Stop Stop typed at tty

SIGTTIN 21,21,26 Stop tty input for background process

SIGTTOU 22,22,27 Stop tty output for background process

1. Overriding SIGSTOP and SIGKILL is disabled. Why?

7

CS 162 Fall 2022 Discussion 1 Operating Systems

If a process were to override their signal handlers to ignore SIGSTOP and SIGKILL, it can run
a malicious process forever, posing substantial threats to the operating system and rest of the
processes.

2. What are the different ways you can use the keyboard to cause the program to exit? Assume the
program is run in a bash shell.

1 void sigquit_handler(int sig) {

2 if (sig == SIGINT || sig == SIGQUIT)

3 exit(1);

4 }

5 void sigint_handler(int sig) {

6 if (sig == SIGINT)

7 signal(SIGINT, sigquit_handler);

8 }

9 int main() {

10 signal(SIGQUIT, sigquit_handler);

11 signal(SIGINT, sigint_handler);

12 while (1) {

13 printf("Sleeping for a second ...\n");

14 sleep(1);

15 }

16 }

exit signals.c

In main, we initialize SIGINT and SIGQUIT to custom handlers. SIGQUIT’s new handler exits
after checking sig, so pressing Ctrl - \ will cause the program to exit. When the program
receives SIGINT the first time, it will redefine the signal handler to be sigquit handler. As a
result, Ctrl - C needs to be pressed twice or Ctrl-C and Ctrl - \.

8

CS 162 Fall 2022 Discussion 1 Operating Systems

3 Pintos Lists

Consider the following code, which sums up the items of a traditional linked list.

1 struct ll_node {

2 int value;

3 struct ll_node *next;

4 };

5

6 /* Returns the sum of a linked list. */

7 int ll_sum(ll_node *start) {

8 ll_node *iter;

9

10 int total = 0;

11 for (iter = start; iter != NULL; iter = iter->next)

12 total += iter->value;

13

14 return total;

15 }

ll.c

Fill in the blanks below that emulates the above code but for Pintos lists (i.e. a list summer).

1 /* Given a struct list, returns a reference to the first list_elem in the list. */

2 struct list_elem *list_begin(struct list *lst);

3

4 /* Given a struct list, returns a reference to the last list_elem in the list. */

5 struct list_elem *list_end(struct list *lst);

6

7 /* Given a list_elem, finds the next list_elem in the list. */

8 struct list_elem *list_next(struct list_elem *elem);

9

10 /* Converts pointer to list element LIST_ELEM into a pointer to the structure

11 that LIST_ELEM is embedded inside. You must also provide the name of the

12 outer structure STRUCT and the member name MEMBER of the list element. */

13 STRUCT *list_entry(LIST_ELEM, STRUCT, MEMBER);

14

15 struct pl_node {

16 int value;

17 struct list_elem elem;

18 };

19

20 /* Returns the sum of a pintos-style list of pl_nodes. */

21 int pl_sum(struct list *lst) {

22 struct list_elem *iter;

23 struct pl_node *temp;

24

25 int total = 0;

26

27 for (______________________; _____________________; ______________________) {

28 temp = list_entry(__________________________);

29 ____________________;

30 }

31

32 return total;

33 }

pl.c

9

CS 162 Fall 2022 Discussion 1 Operating Systems

1 for (iter = list_begin(lst); iter != list_end(lst); iter = list_next(iter)) {

2 temp = list_entry(iter, struct pl_node, elem);

3 total += temp->value;

4 }

pl sum.c

If you need more help with Pintos Lists abstraction, check out lib/kernel/list.h in your Pintos source
code. For a deeper dive into the design, check out this article1 on Linux’s doubly linked lists, which are what
Pintos lists are based off of.

1https://medium.com/@414apache/kernel-data-structures-linkedlist-b13e4f8de4bf

10

https://medium.com/@414apache/kernel-data-structures-linkedlist-b13e4f8de4bf
https://medium.com/@414apache/kernel-data-structures-linkedlist-b13e4f8de4bf

	Fundamentals of Operating Systems
	Concept Check

	Processes
	Fork and Friends
	Signal Handling

	Pintos Lists

