
Discussion 6: Paging, Caches

March 10, 2023

Contents

1 Paging 2
1.1 Concept Check . 2
1.2 Page Shortage . 3
1.3 Demand Pages . 4

2 Caches 6
2.1 Translation Trivia . 6
2.2 AMAT Calculations . 7
2.3 Associativity Analysis . 8
2.4 Replacement Roulette . 8
2.5 On the Clock . 9

1

CS 162 Spring 2023 Discussion 6 Paging, Caches

1 Paging

1.1 Concept Check

1. If the physical memory size (in bytes) is doubled, how does the number of bits in each entry of the
page table change?

Increases by 1. Assuming the page size remains the same, there are now twice as many physical
pages, so the physical page number needs to expand by 1 bit.

2. If the physical memory size (in bytes) is doubled, how does the number of entries in the page table
change?

No change. The number of entries in the page table is determined by the size of the virtual
address and the size of a page – it’s not affected by the size of physical memory.

3. If the virtual memory size (in bytes) is doubled, how does the number of bits in each entry of the page
table change?

No change. The number of bits in a page table entry is determined by the number of control
bits (usually 2: dirty and resident) and the number of physical pages – the size of each entry is
not affected by the size of virtual memory.

4. If the virtual memory size (in bytes) is doubled, how does the number of entries in the page map
change?

Doubles. Assuming the page size remains the same, there are now twice as many virtual pages
and so there needs to be twice as many entries in the page map.

5. If the page size (in bytes) is doubled, how does the number of bits in each entry of the page table
change?

Decreases by 1. Doubling the page size while maintaining the size of physical memory means
there are half as many physical pages as before, so the size of the physical page number field
decreases by one bit.

6. If the page size (in bytes) is doubled, how does the number of entries in the page table change?

Halved. Doubling the page size while maintaining the size of virtual memory means there are
half as many virtual pages as before, so the number of page table entries is also cut in half.

7. The following table shows the 4 entries in the page table. Recall that the valid bit is 1 if the page is
resident in physical memory and 0 if the page is on disk or hasn’t been allocated.

Valid Bit Physical Page Number
0 7
1 9
0 3
1 2

If there are 1024 bytes per page, what is the physical address corresponding to the virtual address
0xF74?

2

CS 162 Spring 2023 Discussion 6 Paging, Caches

The virtual page number is 3 with a page offset of 0x374. Looking up page table entry for
virtual page 3, we see that the page is resident in memory (i.e. valid bit = 1) and lives in
physical page 2, so the corresponding physical address is (2<<10)+0x374 = 0xB74

1.2 Page Shortage

Suppose that you have a system with 8-bit virtual memory addresses, 8 pages of virtual memory, and 4
pages of physical memory. Assume memory is byte addressed.

1. How large is each page?

32 bytes. 8 pages of virtual memory means there is log2(8) = 3 bits for the virtual page number
in the virtual address. This leaves 5 bits for the offset bits, meaning each page is 25 = 32 bytes.

2. Suppose that a program has the following memory allocation and page table.

Memory Segment Virtual Page Number Physical Page Number
N/A 000 NULL
Code 001 10
Heap 010 11
N/A 011 NULL
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

What will the page table look like after the following program is run? Page out the least recently used
page of memory if a page needs to be allocated when physical memory is full. Assume that both the
stack and code are contained in their own single page.

1 int main(void) {

2 char *args[5];

3 for (int i = 0; i < 5; i++) {

4 args[i] = (char*) malloc(32);

5 }

6 return 0;

7 }

page shortage.c

Since there are only four physical pages, the program needs to use demand paging. When
deciding the least recently used page to page out, it’s important to note that the stack will
never get paged out because it gets used every loop when incrementing i for the loop as well as
setting args to the newly allocated address. Similarly, the code will never get paged out since
every line of code requires usage of this page.

Memory Segment Virtual Page Number Physical Page Number
Heap 000 00
Code 001 10
Heap 010 11
N/A 011 NULL
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

3

CS 162 Spring 2023 Discussion 6 Paging, Caches

Memory Segment Virtual Page Number Physical Page Number
Heap 000 00
Code 001 10
Heap 010 PAGEOUT
Heap 011 11
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

Memory Segment Virtual Page Number Physical Page Number
Heap 000 PAGEOUT
Code 001 10
Heap 010 PAGEOUT
Heap 011 11
Heap 100 00
N/A 101 NULL
N/A 110 NULL
Stack 111 01

Memory Segment Virtual Page Number Physical Page Number
Heap 000 PAGEOUT
Code 001 10
Heap 010 PAGEOUT
Heap 011 PAGEOUT
Heap 100 00
Heap 101 11
N/A 110 NULL
Stack 111 01

Memory Segment Virtual Page Number Physical Page Number
Heap 000 PAGEOUT
Code 001 10
Heap 010 PAGEOUT
Heap 011 PAGEOUT
Heap 100 PAGEOUT
Heap 101 11
Heap 110 00
Stack 111 01

1.3 Demand Pages

An up-and-coming big data startup has just hired you to help design their new memory system for a byte-
addressable system. Suppose the virtual and physical memory address space is 32 bits with a 4KB page
size.

1. Suppose you know that there will only be 4 processes running at the same time, each with a Resident
Set Size (RSS) of 512MB and a working set size of 256KB. What is the minimum amount of TLB
entries that your system would need to support to be able to map/cache the working set size for one
process? What happens if you have more entries? What about if you have fewer entries?

A process has a working set size of 256KB which means that the working set fits in 64 pages.
This means our TLB should have 64 entries. If you have more entries, then performance will

4

CS 162 Spring 2023 Discussion 6 Paging, Caches

increase since the process often has changing working sets, and it should be able to store more
in the TLB. If it has less, then it can’t easily translate the addresses in the working set and
performance will suffer.

2. Suppose you run some benchmarks on the system and you see that the system is utilizing over 99% of
its paging disk IO capacity, but only 10% of its CPU. What is a combination of the of disk space and
memory size that can cause this to occur? Assume you have TLB entries equal to the answer from the
previous part.

The CPU can’t run very often without having to wait for the disk, so it’s very likely that the
system is thrashing. There isn’t enough memory for the benchmark to run without the system
page faulting and having to page in new pages. Since there will be 4 processes that have a RSS
of 512MB each, swapping will occur as long as the physical memory size is under 2GB. This
happens regardless of the number of TLB entries and disk size. If the physical memory size is
lower than the aggregate working set sizes, thrashing is likely to occur.

3. Out of increasing the size of the TLB, adding more disk space, and adding more memory, which one
would lead to the largest performance increase and why?

We should add more memory so that we won’t need to page in new pages as often.

5

CS 162 Spring 2023 Discussion 6 Paging, Caches

2 Caches

2.1 Translation Trivia

1. Consider a machine with a physical memory of 8 GB, a page size of 8 KB, and a page table entry size
of 4 bytes. How many levels of page tables would be required to map a 46-bit virtual address space if
every page table fits into a single page?

Since each PTE is 4 bytes and each page contains 8KB, then a one-page page table would point
to 2048 or 211 pages, addressing a total of 211 * 213 = 224 bytes.

Level 1 = 224 bytes
Level 2 = 235 bytes
Level 3 = 246 bytes

So in total, 3 levels of page tables are required.

2. List the fields of a page table entry (PTE) in your scheme.

Each PTE will have a pointer to the proper page, PPN, plus several bits (e.g. read, write,
execute, and valid). This information can all fit into 4 bytes, since if physical memory is 233

bytes, then 20 bits will be needed to point to the proper page, leaving ample space (12 bits) for
the information bits.

3. Without a cache or TLB, how many memory operations are required to read or write a single 32-bit
word?

Without extra hardware, performing a memory operation takes 4 actual memory operations: 3
page table lookups in addition to the actual memory operation.

4. With a TLB, how many memory operations can this be reduced to? Best-case scenario? Worst-case
scenario?

Best-case scenario: 1 memory lookup. Hit in TLB, once for actual memory operation.
Worst-case scenario: 4 memory lookups. Miss in TLB + 3 page table lookups in addition to
the actual memory operation.

5. Consider a machine with a page size of 1024 bytes. There are 8KB of physical memory and 8KB of
virtual memory. The TLB is a fully associative cache with space for 4 entries that is currently empty.
Assume that the physical page number is always one more than the virtual page number. This is
a sequence of memory address accesses for a program we are writing: 0x294, 0xA76, 0x5A4, 0x923,
0xCFF, 0xA12, 0xF9F, 0x392, 0x341.

Here is the current state of the page table.

Valid Bit Physical Page Number
0 NULL
1 2
0 NULL
0 4
0 5
1 6
1 7
0 NULL

6

CS 162 Spring 2023 Discussion 6 Paging, Caches

How many TLB hits and page faults are there? What are the contents of the TLB at the end of the
sequence?

There are 5 TLB hits and 3 page faults.

Address TLB Memory
0x294 Miss Page Fault
0xA76 Miss Page Fault
0x5A4 Miss Valid
0x923 Hit Valid
0xCFF Miss Page Fault
0xA12 Hit Valid
0xF9F Hit Valid
0x392 Hit Valid
0x341 Hit Valid

The page table looks like

Valid Bit Physical Page Number
1 1
1 2
1 3
1 4
0 5
1 6
1 7
0 NULL

The TLB looks like

Tag Physical Page Number
0 1
2 3
1 2
3 4

2.2 AMAT Calculations

Assume you are building a memory scheme with single level page tables. Each main memory access takes
50 ns and each TLB access takes 10 ns.

1. Assuming no page faults (i.e. all virtual memory is resident,) what TLB hit rate is required for an
AMAT of 61 ns?

(10 + 50) · x+ (1− x) · (10 + 50 + 50) = 61

Solving for x gives a necessary TLB hit rate of 98%.

2. Assuming a TLB hit rate of 50%, how does the AMAT of this scenario compare to no TLB?

With a TLB with a hit rate of 50%, the AMAT is

(10 + 50) · 0.5 + (1− 0.5) · (10 + 50 + 50) = 85

7

CS 162 Spring 2023 Discussion 6 Paging, Caches

Without a TLB, the AMAT is simply the cost of a page table look up and the memory access.

50 + 50 = 100

3. To improve your system, you add a two level paging scheme and a cache. The cache has a 90% hit
rate with a lookup time of 20 ns. Additionally, the TLB hit rate is now improved to 95%. What is the
average time to read a location from memory?

AMAT is 0.9 · 20+0.1 · (20+50) = 25 ns. Page tables are held in memory as well, so each page
table lookup will incur a memory access. There are three total memory accesses (two for page
table lookup + 1 for actual data lookup), so the average time to read a location from memory
is 25 · 3 = 75 ns.

However, remember that we have a TLB as well. If the TLB hits, we only have one memory
access (i.e. the actual data lookup) since TLB accesses are not considered as memory accesses.
Otherwise, we have to traverse through the page tables. As a result, the average time to read
a location from memory is 0.95 · (10 + 25) + 0.05 · (10 + 75) = 37.5 ns.

2.3 Associativity Analysis

A big data startup has just hired you to help design their new memory system for a byte-addressable system.
Suppose the virtual and physical memory address space is 32 bits with a 4KB page size.

1. First, you create a direct mapped cache and a fully associative cache of the same size that uses an LRU
replacement policy. You run a few tests and realize that the fully associative cache performs much
worse than the direct mapped cache does. What’s a possible access pattern that could cause this to
happen?

Let’s say each cache held X amount of blocks. An access pattern would be to repeatedly iterate
over X + 1 consecutive blocks, which would cause everything in the fully associative cache to
miss every time.

2. Instead, your boss tells you to build a 8KB 2-way set associative cache with 64 byte cache blocks. How
would you split a given virtual address into its tag, index, and offset numbers?

The number of offset bits is determined by the size of each cache block, giving log2 64 = 6.

Recall that for a set associative cache, each set holds N candidate blocks. Thus, to find the
index we must find how many sets there are. We divide by N first to get total bytes per bank,
then find how many blocks fit in each bank to get the number of blocks. Since it’s two way set
associative, the cache is split into two 4KB banks. Each bank can store 64 blocks, since total
bytes per bank / block size = 212/26 = 26, so there will be 6 index bits. This matches what we
expect, which is that the whole cache can hold 128 blocks.

The remaining bits will be used as the tag (32-6-6 = 20), giving a virtual address breakdown of

Tag Index Offset
20 6 6

2.4 Replacement Roulette

Assume your program has the following memory access pattern.

A B C D A B D C B A

8

CS 162 Spring 2023 Discussion 6 Paging, Caches

1. How many misses will you get with FIFO?

7.

Page A B C D A B D C B A
1 A D + C
2 B A +
3 C B +

2. How many misses will you get with LRU?

8.

Page A B C D A B D C B A
1 A D + A
2 B A C
3 C B +

3. How many misses will you get with MIN?

5.

Page A B C D A B D C B A
1 A + +
2 B + +
3 C D + C

4. LRU is an approximation of MIN, which is provably optimal. Why does FIFO still do better in this
case?

The LRU algorithm is based on a heuristic, trying to exploit temporal locality. It approximates
MIN by assuming that the least recently used cache entry is the cache entry that will be needed
at the furthest point in the future (i.e we can evict it now because the past is a good predictor
of the future). However, as seen in this access pattern, this is not always true.

5. If we increase the cache size, are we always guaranteed to get better cache performance? Explain for
FIFO, LRU, and MIN.

FIFO suffers from Belady’s anomaly, so there isn’t a guarantee. On the other hand, LRU and
MIN are stack algorithms, meaning the contents of a cache with size S is always a subset of the
contents of a cache with size S + 1.

2.5 On the Clock

1. Suppose that we have a 10-10-12 virtual address split using a two-level paging scheme. Assume that
the physical address is 32-bit as well and PTE is 4 bytes. Show the format of a PTE complete with
bits required to support the clock algorithm.

20 8 1 1 1 1
PPN Other Dirty Use Writable Valid

9

CS 162 Spring 2023 Discussion 6 Paging, Caches

2. Assume that physical memory can hold at most four pages. The program you run has the following
memory access pattern.

t 1 2 3 4 5 6 7 8 9 10 11 12
Page A B C A C D B D A E B F

What pages remain in memory at the end of the following sequence of page table operations? What
are the use bits set to for each of these pages?

E: 1, B: 0, F: 1, D: 0

Recall that the clock hand only advances on page faults. No page replacement occurs until
t = 10, when all pages are full. At t = 10, all pages have the use bit set. The clock hand does
a full sweep, setting all use bits to 0, and selects page 1 (currently holding A) to be paged out.
In this scenario, the clock algorithm does not do a great job of evicting the least recently used
page since A was just used in t = 9.

At t = 12, we check page 3’s use bit, and since it is not set, select page 3 to be paged out. F is
brought in to page 3. The clock hand advances and now points to page 4. In this scenario, the
clock algorithm performed well and did not evict B as it was recently accessed.

The table shows the clock hand position before page faults occur.

t 1 2 3 4 5 6 7 8 9 10 11 12
Page A B C A C D B D A E B F
1 A: 1 A: 1 A: 1 A: 1 A: 1 A: 1 A: 1 A: 1 A: 1 E: 1 E: 1 E: 1
2 B: 1 B: 1 B: 1 B: 1 B: 1 B: 1 B: 1 B: 1 B: 0 B: 1 B: 0
3 C: 1 C: 1 C: 1 C: 1 C: 1 C: 1 C: 1 C: 0 C: 0 F: 1
4 D: 1 D: 1 D: 1 D: 1 D: 0 D: 0 D: 0

Clock 1 2 3 4 4 4 1 1 1 1 2 2

10

	Paging
	Concept Check
	Page Shortage
	Demand Pages

	Caches
	Translation Trivia
	AMAT Calculations
	Associativity Analysis
	Replacement Roulette
	On the Clock

